
3 

SYSTEM FUNCTIONS 

3.0 Introduetion 

The examples studied in the preceding chapter suggest that the frequency
domain description of the response of any lumped LTI circuit has a certain 
simple structure. In this chapter and the next we shall study this structure in 
some detail. Our study will not necessarily make it easier for us to determine 
the voltages and currents in any specific circuit problem. But our goals in 
this book go well beyond merely presenting efficient problem-solving techniques. 
Specifically , we hope to develop the insight and understanding necessary for the 
design of complex systems. For this, a full appreciation of the general properties 
of circuit behavior is even more important than skill at detailed circuit analysis. 

3.1 A Superposition Fonnula for LTI Circuits 

Example 2.5-2 led to a formula of the form 

(3.1-1) 

for the transform V1(s) of the voltage across a particular pair of terminals in 
terms of the transforms Io( s) and Vo( s) of two external sources and the transforms 
vc(O)/ sand h(O)/ s of sources replacing the initial capacitor voltage and inductor 
current. The four functions H1(s), H2(S), H3(S), and H4(S), which relate the 
sources to V1(s), were derived by impedance methods. 

It should be immediately evident from the Superposition Theorem of linear 
resistive circuit theory that the form of this result is general. That is, for any 
lumped LTI circuit we can always write a generalized superposition formula 

(3.1-2) 

where 
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L-transform of the circuit voltage or current that is the object of 

our analysis , the one that we choose to designate as the output 
or response of the circuit; 
L-transform of the mth independent external voltage or current 
source considered as an input or stimulus to the circuit; M is 
the number of external sources; 

L-transform of the source describing the effect of the value An(O) 
of the nth state variable at t = 0 (typically , a capacitor voltage 
or inductor current); N is the order of the system; 

Hem(s), Hin(S) = functions of S relating each external source or initial 
condition source (respectively) to the output. 

Equation (3.1-2) is the general form of the functional or operator description of 
LTI systems in the frequency domain that was promised in Section 2.l. 

The two summation terms on the right in (3.1-2) are given separate names: 

N An(O) L Hin(S)-- = Zero Input Response (Zffi) 
n",l S 

M 
L Hem(s)Xm(s) = Zero State Response (ZSR) . 

m",l 

(3.1-3) 

(3.1-4) 

The Zffi term (loosely, the "free" or "natural" response) is not a function of 
inputs in the interval t � 0; it is determined by the initial state at t = 0, which 
in turn depends on inputs for t < O. If all the external input sources are zero for 
t � 0, that is, if Xm(s) = 0, all m, then the Zffi is the total response for t � O. 
On the other hand, the ZSR term (loosely, the "forced" or "driven" response) 
is not a function of the initial state. In particular , if the initial state is the zero 
state, * that is, if An(O) = 0, all n, then the ZSR is the total response for all 
t � O. The generalized superposition formula thus states that the total output 
at any time to � 0 is a sum of the Zffi-the continuing effects at to of inputs for 
t < O-and the ZSR-the effects at to of the inputs in the interval 0 S t < to· 

Note that we shall use the words "input" and "output" to refer either to 
the time functions, x(t) and y(t), or to their transforms, Xes) and yes); by the 
Uniqueness Theorem, these are alternative ways of describing the same things
the input or drive and the output or response. Note also that the Zffi and 
ZSR terms are not at all the same things as the "transient response" and the 
"steady-state response." Even if the input is a constant or a continuing sinusoid, 
so that "transient" and "steady-state" have unambiguous meanings, the ZSR 
term in general contains "transient" as well as "steady-state" components. We 
shall explore the relationships among these various response components more 
carefully in Section 3.3. 
*It is perhaps worth pointing out that the zero state is a unique state for LTI systems in that 
it is independent of the choice of state variables (which is not unique). 
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3.2 System Functions 

The separate elements making up the summations on the right in (3.1-2) all have 
the same structure-a product of the transform of a source (X7nCs) or An(O)/S) 
and a function of s derived from the network (HemCs) or HinCS)). Thus we can 
interpret the factor HemCs) or HinCS) in each elementary term as the ratio of 
the L-transform of the response component to the L-transform of the source 
producing that component. Such a ratio of the transform of a response to the 
transform of a source is called a system function. System functions in electrical 
systems are classified as driving-point or transfer functions, accordingly as they 
relate voltages and currents at, respectively, the same or different ports.* They 
may be dimensionless ratios (voltage/voltage or current/current) or may have 
the dimensions of impedance (voltage/current) or admittance (current/voltage). 
Of course, since system functions may be used to relate drives and responses that 
are not voltages and currents-and not even electrical quantities-the range of 
possible dimensions is limitless. 

Note, however, that system functions are always defined as output divided 
by input. To see why it is important to emphasize this point, consider the 
following example. 

Example 3.2-1 

+ 

+ c 

Figure 3.2-1. Circuit for Example 3.2-1. 
The circuit shown in Figure 3.2-1 is part of the situation considered in Example 2.5-2 
�here we concluded that the ZSR term relating the output Vi(8) and the input Vo(s} 
1S R2 

V,() RILC 
1 R2 1 R 

18 = ( ) ( )110(8), 
82+8 --+- + - 1+� RIC L LC Rl 

The system function is then given by 

R2 
HI(s) = �utput = VI(S) = R;]15 . 

mput Vo(s) S2 + s(_I_ + R2) + _1_( 1 + R2) 
RIC L LC R1 

(3.2-1) 

(3.2-2) 

"For a discussion of the concept of a port (loosely, a pair of terminals) see the appendix to this 
chapter. 
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3.2 System Functions 75 

Hl (s) is a (dimensionless) transfer function since V1 (s) and Vo (s) are defined at different 
ports. 

+ 

Vols) c + 

Figure 3.2-2. Circuit of Figure 3.2-1 with source at right. 

Suppose, however, we were to drive this circuit with a voltage source at the right
hand port and measure the voltage response at the left as shown in Figure 3.2-2. We 
readily compute that in this case (which was not considered in Example 2.5-2) the 
ZSR term in Vo(s) (which now represents the output) determined by V1(s) (which now 
represents the input) is 

1 1 

Va(s) = 
1 

Os Vl(S) = LC 1 Vi(s) 
Cs +Ls S2 + LC 

which corresponds to the system function 

1 
H ( ) = output = Va(s) = LC 

2 S 
input Vt{s) 2 + 1 s 

LC 

(3.2-3) 

(3.2-4) 

Note that H2(S) is a ratio of the voltage across the left-hand pair of terminals to the 
voltage across the right-hand pair; so is 1/H1(s) as defined above. But 1/H1(s) and 
H2(s) are totally different! 
. .. ..  

The point of this example is to show that it is generally necessary to identify 
not only what pair of variables in a circuit are related by a system function, 
but also which variable is the source and which the response. The simplest 
way to make this evident is to adopt the convention that system functions are 
always defined as output divided by input. Consequently, the reciprocal of a 
system function is not necessarily a system function. There is, however, one very 
important case in which a system function correctly describes the relationship 
between two variables irrespective of which is the drive and which the response, 
as illustrated in the next example. 
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Example 3.2-2 

c 

L + 

Figure 3.2-3. Circuit for Example 3.2-2. 

The circuit shown in Figure 3.2-3 is also part of the situation considered in Example 
2.5-2, where we concluded that the ZSR term relating the output Vl(S) and the input 
10(s) is 

( 2 S 1 
) 

R2 S + --+-
Vi(s) = Rl C LC lo(s). 

S2+S -- +- +- 1+-( 1 R2) 1 ( R2) 
RlC L LC Rl 

The system function is then given by 

R2(S2 + _s_ + _1_) 
H3(S) = output = Vl(S) = RlC LC 

. input lo(s) S2+s(_1

_+R2)+_1
_(1 + R2) 

RlC L LC Rl 

(3.2-5) 

(3.2-6) 

H3(S) is a driving-point impedance since Vl(S) and lo(s) are the voltage and current at 
the same port. 

Suppose, however, we were to drive this circuit with a voltage source instead of 
a current source and measure the current response instead of the voltage, as shown in 
Figure 3.2-4. 

L 

c 

Figure 3.2-4. Circuit of Figure 3.2-3 driven by a voltage source. 
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We readily compute 

Io(s) = VI(S) + VI(S) 
R2 

L 
RdCs 

s + -=-----'--,--,-
RI + 1/Cs 

S2 + S(_l_ + R2) + _1_( 1 + 
R2) 

RlC L LC RI ( 8 1 ) VI(S). 
R2 82+ -- +

RIC LC 

The system function is then given by 

and is a driving-point admittance. 
��� 

(3.2-7) 

(3.2-8) 

Note that in this example, unlike the situation with transfer system func
tions, interchanging which variable is considered the input and which the out
put simply inverts the system function. This is evidently a general property of 
driving-point impedances and admittances. Can you explain why driving-point 
and transfer system functions are different in this respect? The driving-point 
impedance or admittance characterizes the behavior of a 2-terminal (single-port) 
LTI network no matter how it is driven or connected externally. Similar com
prehensive descriptions are possible for multiterminal L TI networks designed for 
their transfer properties, but such descriptions require more than the specification 

of a single transfer function (see the appendix to this chapter) . 

3.3 System Functions as Response Amplitudes to Exponential Drives 

As explained in Chapter 2, system functions are readily computed by impedance 
methods with Land G replaced by impedances Ls and 11Gs, and the network 
then solved as if it were a resistive circuit. This same procedure-with s replaced 
by J'w-is used (as you know from earlier studies) to find the sinusoidal steady
state frequency response of a network. Thus, for s = jw, the system function 
H(s) has the following interpretation: 

If the input to an LTI network is the complex exponen
tial X efwt and the steady-state output is the complex ex
ponential Yefwt, then 

YjX= HUw) 

where H( s) is the system function relating the input and 
output. 
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In other words, ejwt as a drive gives H(jw)ejwt as the "steady-state" response 
after the "transients" have died away. Indeed, this result is commonly used as 
the basis for the experimental measurement of H(jw) for an LTI system whose 
internal structure is unknown, concealed inside a "black box." We now show 
with an example that H(s) has a similar interpretation even when s ¥ jw, so that 
est = eC1tejwt cannot correspond to any straightforward notion of "steady-state" 
(since eC1t, (J ¥ 0, either grows or decays with time) . 

Example 3.3-1 

� 1 1 
Rl = R2 = 1 0, C1 = '3 F, C2 = '3 F, Q = '2 

Figure 3.3-1. Circuit for Example 3.3-1. 

In Problem 3.1, you will show that H(s) for the circuit in Figure 3.3-1 is 

which for the given values becomes 

H(s) 
__ -_s,,-/2_ 
- S2 +4s + 3 

- s/2 
(s + 1)(5 + 3)' 

(3.3-2) 

Now let vo{t) = esot, t > 0, where So is an arbitrary complex number. Then L[vo(t)] = 
Vo(s) = l/{s - so), and under ZSR conditions 

-5/2 V3(s) = H(5)Vo(s) = 7'(s-+-I77

)7(s-+

..!..:

3""'){'-s-_-so--c), 

If 80 ¥ -1, -3, we may expand 

-1 3 -so/2 

V
{) 4(1 +50) 4(3+so) {So + 1){so +3) 

3S = + + -----
5+1 s+3 S-So 
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3.4 System Functions and the Input-Output Differential Equation 79 

where we recognize the residue in the (s - so) term as H(so) so that the ZSR is 

(t) 1 -t + 3 -3t H( ) sot 
V3 = 4(1+so)e 4(3+so)e + soe , t > O. (3.3-5) 

If So is purely imagin ary , So = jwo, this result describes the usual sinusoidal-drive 
situation-the first two terms are "transients" resulting from the sudden application to 
a resting network of the drive ejwot at t = 0; in time they die away, leaving the "steady

state" response H(jwo)eiwot. But even if So #- jwo, the last term-the "driven" term

in the expression for V3(t) will come to dominate after a while provided that !Re[sol > 
-1. (If !Re[sol < -1, the "driven" term vanishes more rapidly than the "transient" 
terms; the latter thus ultimately become relatively more important, although all three 
terms may be decaying. Note also that the word "driven" here in quotes means simply 
that term having the same form as the drive--that is, H(so)esot. The total driven 
(zero-state) response contains both the "driven" term and "transient" terms. ) 
.. .. ..  

The result obtained in Example 3.3-1 is general: 

If the input to an LTI system has the form e"ot, then 
the output will become predominantly H(so)eBot as time 
passes, provided that So lies in that part of the s-plane 
to the right of the rightmost pole of H(s). This region is 
called the domain of convergence for H{s). 

This important observation illustrates the complete way in which H(s) is a 
generalization of HUw), and justifies calling s the complex frequency. 

Figure 3.3-2. Domain of convergence. 

3.4 System Functions and the Input-Output Differential Equation 

There is a complete and close relationship between the system function H(s) and 
the input-output differential equation obtained from the node or state differential 
equations by eliminating all of the unknown variables except the output. Several 
examples will make the general relationship evident. 
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Example 3.4-1 r--------, ;(t)=o r--------, 

i( t) t 

+ I 
I 
I 
I 

v(t)I 
I 
I 
I 

- I 

c 
R 

I 
I 
I 
I 
I I I I I I 
I I 

+ 

v( 1) c 

L 

R 

I I 
I I 
I I 
I 
I 
I 
I I I 

L.. _______ J L ________ J 

Figure 3.4-1. Circuit for Example 3.4-1. 
Differential state equations for the circuit to the left in Figure 3.4-1 in terms of v(t) 
and iL(t), the capacitor voltage and inductor current, are 

diL(t) . L� = -R�L(t) + v(t) 

Cdv(t) = i(t) - iL(t). 
dt 

(3.4-1) 

(3.4-2) 

Solving (3.4-2) for iL(t) and substituting into (3.4-1) give the input-output equation 
in terms of the drive i(t) and the response v(t): 

d2v(t) R dv(t) 1 ( ) _ 1 (di(t) R .( )) dj2+Ydi+ LC
vt -(5 dt+y�t . (3.4-3) 

The natural frequencies of this circuit-that is, the frequencies present in v(t) when 
i(t) = 0 and the terminals are open-circuit as shown to the right in Figure 3.4-1-are 
the roots of the characteristic equation 

2 R 1 8 +-8+-=0 
L LC 

derived from the left-hand side of the input-output equation. 

(3.4-4) 

The system function relating the drive and the response is the driving-point 
impedance 

Z(s) = V(s) = output 

1(8) input 

which is readily found by series and parallel impedance arguments to be 

1 
C(Ls+R) 

Z( 8) = -'1:'-'
8'----

C8 +Ls+R 

CroBs-multiplying gives 

V(s) 
1(8) . 

(S2+�8+ L�)V(8)=b(8+�}(S). 
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Comparison with the input-output differential equation shows that here, and in general, 
to derive the input-output differential equation from the system function it is only 
necessary to cross-multiply and identify d/ dt +-> 8. Often, indeed, the easiest way to 
derive the input-output differential equation is to use impedance methods first to find 
the system function. The tricky process of eliminating intermediate veriables and their 
derivatives is thus much simplified . Algebraic equations are easier to manipulate than 
differential equations. 

The relationship between the system function and the input-output differential 
equation can also be deduced in the opposite direction by exploiting the result derived 
in Section 3.3-that est as an input gives ultimately the output H(s)e8t for s in the 
domain of convergence. Thus if we substitute i(t) = est and vet) = H(s)e8t into the 
input-output differential equation above, we obtain 

H(s)s2e8t + H(s)� se8t + H(s) L�e8t = b( sest + �e8t). (3.4-8) 

Solving for H(s) gives the same result H(s) = Z(s) as derived above by impedance 
methods. * 

••• 
An important conclusion to be derived from the relationship between the 

system function and the input-output differential equation is that the natural 
frequencies of the circuit are the roots of the denominator polynomial , that is, 
the poles of R(s). t Loosely, the output Yes) = R(s)X(s) can be finite when the 
input Xes) is zero only if R(s) is infinite, and this happens only for the values 
of s that are the poles of R(s). 

Example 3.4-2 

itt) 

+ v( t) 

r--------.., 
I 

L 

c 
R 

I 
I 
I 

I 
L _______ .J 

+ 
t 

o 
" i (t) -

r--------, 

L 
I 

C I I 
R I 

I 
I 
I 

L ________ J 

Figure 3.4-2. Circuit for Example 3.4-2. 

• Attempts to derive the form of the ZSR and H( s) from the input-output differential equation 
by direct application of the L-transform Differentiation Theorem can lead to difficulties. See 
Problem 3.3. 

tIf the numerator and denominator polynomials of H(s) contain a common factor, that is, if a 
zero of H(s) cancels a pole, the relationship between H(s) and the zm is less close. Specifically, 
the zm may contain a term whose complex frequency is not a pole of H(s). However, there is 
no signal x(t), t < 0, that when applied to the normal input corresponding to H(s), will generate 
such a zm term for t > O. On the other hand, if such a zm term is excited, for example, 
by driving the network at some other input, then there is no input that can be applied at the 
normal input that will cancel the effects of this zm term in a finite time; such a system is said 
to be uncontrollable. For an example, see Exercise 4.5. 
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Note that the poles of R(s) are the natural frequencies under .the condition that the 
input is zero. If the input is a current source as in Example 3.4-1, then zero input 
implies that the input terminals are open-circuit. But if the input is. a voltage source, 
zero input implies that the input terminals are shorted. Thus consider (as shown in 
Figure 3.4-2) the same circuit as before but driven by a voltage source v(t); the response 
will now be taken to be the current i(t). The input-output roles of v(t) and i(t} are 
interchanged. Hence the characteristic equation is 

(3.4-9) 

The root of the characteristic equation, s = -RIL, defines the functional form of the 

current, i(t) = J e-Rt/L, that can flow under short-circuit conditions, that is, v(t) = 0, as 
shown to the right in Figure 3.4-2. The system function in this case is the driving-point 

admittance* 

Of course, 

J(s) Yes) = 
V(s )  . 

( 2 R 1) 
C s +-s + -

1 L LC 
Y(s) = 

Z(s) = R 
s+I 

(3.4-10) 

(3.4-11) 

The natural frequency is the pole of yes), or the zero of Z(s), under short-circuit 
conditions. 
��� 

The observation that the poles of the system function H(s) are the natural 
frequencies of the circuit is, of course, consistent with the fact that 

Y(s) = H(s)X(s) (3.4-12) 

is the L-transform of the ZSR output y(t) to the input x(t). If Y(s) = L[y(t)] is 
expanded in partial fractions, the poles of H(s) yield terms describing that part 
of the response whose form is determined by the circuit rather than the drive . 
3.5 Summary 
The response of a linear time-invariant circuit can always be interpreted as 
the sum of the zero-state response and the zero-input response. Each of these 
components is in turn a superposition of terms describing the separate effects of 
each of the external sources and each of the internal sources reflecting the initial 
state. Each term has, in the frequency domain, the form of a product of the 
L-transform of the nth source times a function of s, Hn(s), called the system 

*The word "admittance" was coined by Heaviside to describe the ratio of a current to a voltage. 
Regrettably, the symbol Yes) for admittance is well-established. Note the distinction in this 
book between Yes) as the admittance in the electric-circuit example leading to (3.4-11) and 
Yes) as the L-transform of yet) in a general formula such as (3.4-12). 
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function, which relates the response to that particular source or drive. System 
functions are usually easy to determine by impedance methods from a structural 
description of the circuit. If the particular drive has the form esot, then the 
response component will approach Hn(so)esot after a while if So is in the domain 
of convergence for Hn(s), that is, in the region to the right of the rightmost pole 
of Hn(s). Since the poles of Hn(s) are the natural frequencies of the system, 
esot under these conditions decays more slowly (or grows more rapidly) than 
the natural response terms, and this explains its eventual dominance. Finally, 
Hn(s) and the input-output differential equation relating the response to that 
particular source contain essentially identical information. Thus, in general, the 
system function summarizes everything there is to know about the input-output 
behavior of an LTI system. 
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APPENDIX TO CHAPTER 3 

System Function Characterization of LTI 2-Ports 

As illustrated in Example 3.2-1, a system function describes the behavior of a network 
only under certain specified source and termination conditions. Complete "black-box" 
descriptions of multiterminal LTI networks adequate to characterize the behavior of the 
network under any conditions of drive and load are possible, however, and are often 
extremely useful . An important special case is discussed in this appendix. 

Consider a network composed of linear time-invariant R's, L's, and C's, ideal 
tra.nsformers, controlled sources, etc ., enclosed in a box so that it is accessible only 
through four terminals. Suppose further that the external connections to the 4-terminal 
network constrain the terminal currents to be paired-the currents in each pair being 
equal in magnitude and opposite in sign. Such a 4-terminal network is called a 2-
port. * One external arrangement that ensures 2-port behavior is shown in Figure 
3.A-1. Obviously many other possibilities exist; a sufficient condition is that there 
be no connection between the external networks connected to ports 1 and 2 except 
through the 2-port . The description of a 4-terminal network as a 2-port obviously does 
not characterize the behavior of the network under all external conditions, but it is 
adequate for many purposes. 

Figure l.A-I. 

Even if we do not know what the detailed circuit arrangements may be inside an 
LTI 2-port (that is, if we are forced to consider the 2-port as a "black box" accessible 
only through electrical measurements made at its terminal pairs) , we can still conclude 

*Extending this terminology, a network connected to the rest of the world through n paired 
terminals is called an n-port. A 2-terminal network is always a i-port, since no matter how it 
is connected, KCL guarantees that the currents at the two terminals are paired. A 3-terminal 
network may always be represented as a 2-port without los8 of generality, as shown in Figure 
3.A-2. 

I, (5) 
Figure 3.A-2. 
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from superposition and impedance arguments such as discussed in this chapter that 
the ZSR currents I1(S) and h(s) must be given by equations of the form 

!t(s) = Yll(S)V1(S) + Y12(S)V2(S) 

h(s) = Y21(S)V1(s) + Y22(S)V2(S) 

in terms of the external voltage sources V1(s) and V2(s). The various system functions 
Y;j(s) are called the short-circuit driving-point and transfer admittances of the 2-port 
because they can, at least in principle, be inferred from measurements made on the 
circuit with one or the other of the terminal pairs shorted, as shown in Figure 3.A-3. 

Figure 3.A-3. 

II (S) ,...-_____ ----, 

+ 
Ls 

Figure 3.A-4. 

The short-circuit admittances characterize the ZSR behavior of the 2-port under 
any external conditions that satisfy the paired-current condition. For example, if the 
2-port is loaded with an inductor at port 2 and driven from a circuit with TMvenin 
parameters as shown in Figure 3.A-4, then the source and load impose the conditions 

V1(S) = Vo(s) - !t(s)Ro 

V2(s) = -Lsh(s). 

Combining with the two short-circuit admittance equations, we may eliminate V1(s), 
I1(s), and 12(s) to obtain the overall transfer ratio under these conditions 

1 
V2(s) -R;;

Y:l1(s) 

Vo(s) = (� + Yll(s))(L + Y22(S)) 
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(See Problem 3.6 for another way of deriving this result. If the 2-port is reciprocal, the 
derivation is even simpler; see Problem 3.5. Many alternate methods of characterizing 
a 2-port are possible, one or another of which may be simpler in a particular situation. 
See Problems 3.7 and 3.8 for examples. ) 

If limitations are imposed on the kinds of elements out of which the 2-port is 
constructed, then the Yij{ s) will in general have to satisfy certain conditions-some 
of which will be discussed in Chapter 4. One of the more interesting conditions is 
reciprocity, 

Y12(S) = Y21(S) 

which is guaranteed if the 2-port contains LTI R's, £ls, C's, and transformers, but no 
controlled sources. For a further discussion of reciprocity, see Problem 3.5. 

Copyrighted Material 



Exercises for Chapter 3 87 
EXERCISES FOR CHAPTER 3 

Exercise 3.1 

Consider the circuit below in which the current source is the input and the voltage 
across the resistor R is the output : 

L + 

i (tl t c R v(tl 

a) Show that the system function relating the input and output is 

R 

H(s) = LC 
R 1 

S2+-S+-L LC 
What are the dimensions of the separate terms in the denominator and numerator? 
What are the dimensions of H(s)? 

b) Determine the input-output differential equation. 

c) Show that the form of the ZIR is 

vet) = Ae-t/2 cos( v;t + e) 
if R = 1 0, L = 1 H, C = 1 F. 

Exercise 3.2 

Use impedance methods to derive the input-output differential equation for the circuit 
below and thus show that it behaves as a double integrator, that is, vdt) - d2v2(t)/dt2. 

+ 
C C v2 (t) 

r

2

C 

t

/2 1 ---
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Exercise 3.3 

i (t) 
+ 

v(t) 

r---------.., 

In 

IH 
J 
J 

L _________ ...I 

i (t) 

+ 

v (t) 

r---------, 
I 
I 

I 
L _____ _ __ .J 

a) Show that the driving-point impedance of the network on the left is identical for 
all 8 to that on the right; that is, 

Z(8) = �(�1 = 1. 

b) Many years ago Joseph Slepian, writing in the 'Transactions of the old American 
Institute of Electrical Engineers, proposed as a puzzle the description of a test to 
be performed solely at the electrical terminals that would permit you to discover 
which of the two "black boxes" above you had been handed. A flood of letters 
resulted and the argument went on for months. Some writers tried to prove that 
no successful test was possible; others maintained that under certain excitation 
conditions the circuits would behave differently. What is your position? 

Exercise 3.4 

Experiments on an LTI system lead to the following conclusions: 

a) Independent of the state of the system at t = 0, an input x(t) = e-2t, t > 0, yields 
an output of the form y(t) = 3e-2t + (ko + kl t)e-t, t > 0; 

b) Independent of the state of the system at t = 0, an input x(t) = e-3t, t > 0, yields 
an output of the form y(t) = (k2 + k3t)e-t, t > 0. 

Argue that, if the system function H( 8) is a proper fraction (H( 8) ..... 0 as 8 -+ 00), it 
must be 

H(8) = 3(8+3). (8 + 1)2 
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PROBLEMS FOR CHAPTER 3 

r------, 
o-+--I � I 

II I 
1 I 1 R2 I 1 1 V2( t) 1 I I 

j 1:1 
: + 
I V3{t) 
I 

- I I 

a) Argue that the dashed section in the circuit above is equivalent to the circuit shown 
to the right, so that an overall equivalent circuit takes the form shown below. 

+ 

+ 

b) Using impedance methods, write ZSR node equations for the nodes whose Voltages 
are labelled Vl (t) and V2 (t). Show that your results are consistent with the node 
equations in differential form given in Exercise 104. 

c) Solve these node equations for the system function H(s) = V3(S)/VO(s) and check 
your result with the formula given in Example 3.3-l. 

d) Take the L-transform of the differential state equations given in Exercise 1.4 under 
zero-state conditions. Solve these equations for H(s) = V3(s)/Vo(s), where V3(S) = 
-0%(8), and compare your result with that derived in (c). 
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Problem 3.2 

i ( f) 

a 

b 

L 

C=O.01I-'F, R= 3 kO, L=20 rnH 

+ 

v (1) 

a) With the switch in position a, find the system function H(s) = V{s)/I(s), where 
v(t) is the ZSR to the input itt), V(s) = L[v(t)], etc. 

b) Suppose the current i( t) has been held at a constant value i( t) = 1 mamp with the 
switch in position a for a very long time prior to t = O. At t = 0 the switch is 
moved to position b. Find the values of v(t) and dv(t)/dt just after the switch is 
changed. 

c) Find the natural frequencies of the circuit. 
d) Find v(t) for all time after the switch is switched to b. 

Problem 3.3 

Lynn Iyar , one of the more mathematically inclined students in the class, was not 
satisfied with the rather informal ways described in Section 3.4 for relating the input

output differential equation and the system 
function for an LTI circuit . Why not, she + 
thought, simply apply the L-transform Dif-
ferentiation Theorem to obtain the desired i ( t ) R e v ( t ) 
relationship directly? Thus the RC circuit 

shown to the right corresponds to the input-
output differential equation 

Cdv(t) + �v(t) = itt). dt R 

Applying the L-transform Differentiation Theorem, 

L[ d��t)] = sL[x(t)]- x(O) 

yields 
1 

CsV(s) - v(O) + R V(s) = I(s). 
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Since the system function describes the ZSR, Lynn argued we should set v(O) = 0 and 
solve for 

1 
H(s) = V(s) = C 

I(s) + 1 s RC 
which is the same as the result obtained by impedance methods . (4) 

Lynn then tried to apply this method to more complex situations. She readily 
derived the formula 

L[d2X(t)] == SL[dX(t)] _ dX(t)\ dt dt dt t=o 
= s2 L[x(t)1- sx(O) _ dx(t) \ 

dt t=O 

which can obviously be extended to deriva
tives of any order. However, when she tried 
to use (2) and (5) to transform the second
order equation of Example 3.4-1, relating the 
input i(t) and the output vet) for the circuit 
shown to the right, 

i (t) 

she obtained 

d2v(t) !!.. dv(t) _1 (t) = �(di(t) !ii()) dt2 + L dt + LC v C dt + L t 

+ 

v{ t) 

( 2 R 1 ) ( R) dv(t) \ 1 ( R) 1 . s +-s+- V(s)- s+- v(O)-- =- s+- I(s)--�(O). L LC L dt t=o C L C 

(5) 

(6) 

(7) 

Now setting v(O) = dv(t)/dtlt=o = 0 does not appear to give the same result as 
impedance methods for the ZSR system function H(s) = V(s)/I(s) unless i(O) = o. 

Lynn was baffled and consulted her roommate Anna Logg. Anna, whose approach 
to problems was more physical than mathematical, took one look at the circuits and 
said "Oh, the trouble is that setting vet) and dv(t)/dt to zero in the second circuit does 
not necessarily imply that the circuit is in the zero state." Show that Anna is right 
and explain how this accounts for Lynn's difficulties in interpreting equation (7). Show 
in general that a necessary and sufficient condition such that setting the output and 
its first N - 1 derivatives to zero forces an Nth -order system to be in the zero state is 
that the input-output system function have no zeros for finite values of s. 
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Problem 3.4 

Most systems, linear or not, eventually yield a periodic response to a suddenly applied 
periodic input. Unless the system happens to be in exactly the right state at the time 
of input application, however, there will be a nonzero interval at the start during which 
"transients" die out. A classical method of calculating the ultimate periodic response 
in such cases is to treat the state at some moment after the periodic response has been 
established as an algebraic unknown, compute the response of the system to the next 
complete period of the stimulus in terms of this unknown initial state, equate the state 
at the end of this period to the initial state, and solve the resulting equations for the 
required initial state. An alternative scheme for LTI systems uses the L-transform and 
insight into the system response structure as illustrated below. 

a) Let x(t) be constructed by repeating 
periodically with period T a pulse 
waveform xp(t) of duration S T as 
indicated in the figure to the right. 
Show that T T 

L [x(t)] = X(s) = 
Xp(s) , where Xp(s) = L [xp (t») . 

1 - e-sT 

(IllNT: Argue that, for !Re[s] > 0, 

1 = 1 + e- s T  + e - 2 s T  + e - 3 s T  + . . . . ) 

2 T  3 T  

1 - e - s T  
15XO ( f )  

b) .As a specific example, find the L-

D transform of the waveform xo(t) n - - - -
shown to the right. +-_-1-_--L_--L_-.J __ -I. __ •• TI2 T 2 T  

c) Suppose that xo (t) from (b) is the input to an LTI system with system function 
H(s) = 1 /(s + a), a > 0. Sketch the pole locations in the s-plane of the ZSR, 
Y (s) = H(s)X(s) . (Pay particular attention to the possibility of poles located 
along s = jw .)  

d) The poles in (c)  can be divided into two classes-a finite number of poles located 
inside the half-plane !Re[s] < 0, and an infinite number of poles located along the 
J·w-axis .  The former correspond to transient terms in y(t) that decay with time; 
the latter correspond to continuing sinusoids that superimpose to comprise the 
periodic part of the response . Find the transform of the periodic part of the ZSR 
in (c) by subtracting away from Y(s) those terms in the partial-fraction expansion 
of Y( s) that correspond to the leftrhalf-plane poles. 

e) Rearrange the result in (d) so it has the form derived in (a) and thus identify the 
transform Yp(s) of one period of y(t). Do an inverse transform ,to obtain yp(t) and 

sketch your result. 
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Problem 3.5 

Physically, an L TI 2-port is  said to be reciprocal* if the ZSR current in a short across 
one pair of terminals in response to an arbitrary voltage source across the other pair of 
terminals is independent of which end is shorted and which driven-as implied in the 
figure below. The 2-port is reciprocal if i,, (t) = ib (t) (ZSR) for all v(t} . 

L T I  
2 - P o r t  

L T I  
2 - P o r t  

a) If the 2-port i s  described by the short-circuit admittance equations of the appendix 
to this chapter, show that a necessary and sufficient condition for reciprocity is 

b) Show that an equivalent test for reciprocity is that the voltages v,,(t) and Vb(t) be 
the same under the two conditions illustrated below for an arbitrary current itt) . 

L T I  
2 - Por f  

+ + 
2 va ( t )  vb ( t )  _ � S-

LT I 
2 - p o r t  

o-I----c open 0---'1-0 
'-------� c i rc u i t  1..-______ -1 

c) Show that another equivalent test for reciprocity is that 

%(s) h(s) 
V,,(s) 

= 
fats) 

where the voltages and currents are defined by the circuits illustrated below. 

LT I 
2 - Po r l  

s h o r t  
+ c i r c u i t  � 

2 Vb ( t )  i b ( f )  
O-<I----�� 0 P en  

c i r c u i t  

LT I  
2 - Port  

*It can b e  shown that a sufficient condition for a 2-port to b e  reciprocal i s  that i t  contain only 
LTI R's,  L's ,  C's ,  and coupled coils (e.g. , ideal transformers) .  This is sometimes called the 
Network Reciprocity Theorem. It is straightforward to show that this Reciprocity Theorem is a 
consequence of the symmetry of the node equations as they are usually written for such circuits; 
that is, the term in the KCL equation at node i proportional to the voltage at node j is identical 
to the term in the KCL equation at node j proportional to the voltage at node i (see, e.g. , E. A. 
Guillemin, Introductory Circuit Theory (New York, NY: John Wiley , 1953) p.  148ft). A more 
elegant but rather less transparent argument follows from Tellegen 's Theorem-see Problem 
4.4 and, e.g. ,  C. A. DeBoer and E. S. Kuh, Basic Circuit Theory (New York, NY: McGraw-Hill, 
1 969) p. 6S1fl'. The reciprocity concept is readily extended to n-ports and even to non-linear 
circuits. A key theorem due to Brayton is that a network composed of interconnected reciprocal 
subnetworks is reciprocal (see, e.g. , G. F .  Oster , A. S. Perelson , and A. Katchalsky, Quart. 
Rev. Biophysics, 6 ( 1973): 1-138b . h . opyng ted Matenal 
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Problem 3.6 
a) Show that any reciprocal LTI 2-port can be represented by the equivalent II

circuit* shown below where the 1-port admittances Ya(S) , Yi,(s), and 1';,(s) are 
defined in terms of the short-circuit admittances of the 2-port by 

Ya(S) = Yu(s) + Y12(s) 
Yb(S) = -Yn(s) = -Y2 1(s) 
Yc(s) = Yn + Y21(S) . 

, - - - - - - - - - - - - - - - - - - - - ,  
I I  (5) : : 12 ( 5 )  
+ 

\Ij ( 5 )  

1 
1 
1 
I 

Yo ( s )  Yc ( s )  2 1  I 
1 
1 
I 

I I L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  � 

+ 

V2 ( s )  

b) Use the equivalent circuit above and simple techniques of resistive network theory 
(e .g . ,  Thevenin-Norton equivalences ,  voltage-divider formulas, etc . )  to derive the 
transfer ratio V2 (s)/Vo (s) in the following diagram and show that the result agrees 
with the formula derived in the appendix to this chapter . 

"It must be understood that this is only a mathematically equivalent circuit; there is no 
guarantee that three I-port circuits having the admittances Ya(S), Yb(S), and Yc(s) could 
necessarily actually be constructed out of positive R's, Vs, and C 's,  etc. Moreover, the 
equivalence holds only for terminal-pair behavior (2-port behavior); for example, the bottom 
terminals of each pair are shorted together (that is, they are at the same potential) in the 
equivalent circuit but may not be so connected in the actual 4-terminal network. 

Copyrighted Material 



Problem 3.7 

Problems for Chapter 3 95 

If the currents rather than the voltages at the ports are taken as the independent 
variables, then the LTI 2-port shown in the figure below can be characterized by the 
equations 

V1(s) = Z1 1(s)Il(8) + ZI2(S)h(s) 

V2(s) = Z2 1 (8)Il (S) + Z22(s)I2(S) 

where the Zij(S) are called the open-circuit driving-point and transfer impedances of 
the 2-port . 

I ( s )  I ( s) - � 2 

v 
+ LT I + 
, ( 5 ) I 2 - P or t  2 V2 ( 5 ) 

- -

a) Devise experiments to measure the open-circuit impedances analogous to those 
described in the appendix to this chapter for the short-circuit admittances . 

b) Derive the following expressions for the open-circuit impedances in terms of the 
short-circuit admittances,  and vice versa: 

c) Show that the tests for reciprocity described in Problem 3 .5  imply and are implied 
by 

Z1 2 (S)  = Z21 (8) .  

d) Show that any reciprocal LTI 2-port can be represented by the equivalent T -circuit 
shown below, where the 1-port impedances Z,,(8) ,  Zb(S) , and Ze(8)  are defined in 
terms of the open-circuit impedances of the 2-port by 

Z,, (8) = Z1 1 (s) - Z1 2 (S) 

Zb(S) = ZI 2 (S) = Z21 (S) 

Ze (S) = Z22 (8) - Z21 ( S) .  
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r - - - - - - - - - - - - - - - - - - - - - - �  
I 
I 

+ 

2 

I 
L _ _ _ _ _ _ _ _ _ _ _  - - - - - - _ _ .J 

+ 

e) Open-circuit 2-port impedances are very useful for describing the properties of 
a pair of coupled coils--a set of two coils or inductors arranged physically (e.g . ,  
wound on a common core) so that the changing flux generated by a changing 
current in one coil links both coils and thus induces voltages in both coils. The 
symbol for a pair of coupled coils is shown below. 

M o---�--� /--__ --� 
+ + 

The corresponding equations are 

The mutual inductance M may have either sign (depending on the choice of 
reference directions for the currents) and is constrained in magnitude by the fact 
that physically the coupling coefficient, k = IM I /v'L1L2 ,  must be less than unity. 
Argue that the arrangement of three inductors in a T-circuit as shown to the right 
above is mathematically equivalent as a 2-port to the pair of coupled coils shown 
to the left. Could any pair of coupled coils therefore physically be replaced by 
three uncoupled inductors of appropriate values without altering the behavior of 
the circuit? Explain. 

f) Devise an alternative equivalent circuit for a pair of coupled coils in the form of a 
IT-circuit of inductors , based on the shortr-circuit admittance equivalent circuit of 
Problem 3 .6 . Give values for the elements in your circuit in terms of L1 , � ,  and 
M .  
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In addition to the open-circuit impedance or short-circuit admittance representations 
for LTI 2-ports discussed in Problem 3 .7  and the appendix to this chapter , four other 
ways of characterizing LTI 2-port behavior are possible-corresponding to the four 
remaining ways of picking two independent variables from the four terminal quantities 
VI(S) , V2(S) ,  Il (S) ,  and 12 (s) .  The preferred choice among the 6 possibilities in a 
particular practical case usually involves a balance of two factors: 

1. For which representation is the description of a particular 2-port simplest? 
2. For which representation are the constraints imposed by the external circuits most 

readily expressed? 
This problem explores these factors with several examples. 

a) The ideal transformer shown to the right 
is characterized by the equations 

V2{t) = nVl (t) 

ni2 (t) = -il (t) .  

I t  may b e  considered the limit of a pair 
of coupled coils (see Problem 3 .7 )  as k -+  
1 and Ll -+ 00 ,  L2 -> 00 with L2 / Ll = 
n2 . (n is approximately the ratio of the 
number of turns in the secondary wind
ing (L2 )  to the number of turns in the 
primary winding (Ll ) ) .  Show that both 

r - - - - - -, 
1 I :  n : 

0-.... -'-1 -..... r--'-, -I-.() + I I + 
V I ( t )  v2 ( t )  

, , L _ ___ _ .J 
I d e o l  

the open-circuit impedances and the short-circuit admittances o f  Problem 3.7 and 
the appendix to this chapter are infinite for the ideal transformer, but that the 
so-called ABCD representation of a 2-port, 

V2 (s) = A(s)V1 (s) + B(s )Il (s) 

h(s) = C(S)Vl (S) + D(s)Il (S) 

exists. Find A(s) ,  B(s) ,  C(s) ,  and D(s)  for the ideal transformer. 

b) A simplified incremental circuit for a 
transistor is shown to the right . Find the 
parameter values corresponding to this 
circuit for the hybrid representation of 
a 2-port, 

Vl (S)  = Hl l (s)Jt (s) + Hds)V2 (S) 

h (s) = H21 (S)Il (S) + H22 (S)V2 (s) . 

+ 

c) Determine the condition that must be satisfied by the Hij (S) parameters of (b) if 
the 2-port described by this representation is reciprocal . Is the incremental circuit 
for the transistor reciprocal? 

d) Suppose two 2-ports are connected in parallel to form the single 2-port represented 
by the dashed box in the figure below. (The purpose of the 1 : 1  ideal transformer i s  
to ensure that the 2-port conditions remain satisfied for each 2-port in the parallel 
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combination. The transformer is unnecessary if, for example , both constituent 
2-ports have common grounds connecting their lower terminals as shown by the 
dashed lines. ) Find the short-circuit admittances characterizing the parallel con
nection in terms of the short-circuit admittances of each constituent 2-port. 

r - - - - - - - - - - - - - - �T - - - - - - - - '  

A 2 
_ _ _ _ _ _ _ _ �L-� 

2 

B 2 

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ 
e) Draw a diagram showing how two 2-ports should be interconnected to form a new 

2-port such that the open-circuit driving-point and transfer impedances of the 
interconnection are the sums of the corresponding open-circuit driving-point and 
transfer impedances of the constituent 2-ports. 

Problem 3.9 

II ( 5 1 12 ( 5 ) 
0 � 'VV'v 

Ie 

'VV'v .. 0 
+ R R + 

VI ( s l V2 ( 5 1  

T 0 0 

a) For the circuit above, find the short-circuit driving-point and transfer admittances 
in the representation 

11 (S) = Yl l (S)V1 (S )  + Y12(S)V2(S) 

h(s) = Y21 (S)V1 (S) + Y22(S)V2(S) ,  

b) Show that the circuit on the next page is equivalent to that above, in the sense 
that it has the same 2-port representation. 
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o ____ �� _______________ J[�_C_/_2_0 
c) Show that the circuit below is also equivalent to those above as a 2-port. 

R 
d) Is there any set of measurements that could be made at the ports of the three 

circuits above to distinguish one from the others? 

e) Is there any set of measurements that could be made at the terminals of the three 
circuits above to distinguish one from the others? 

Problem 3.10 

a) A negative-impedance converter is a 2-port device that converts an impedance at 
its output to appear at the input as the negative of that impedance, as shown 
below. 

N eg a t i ve 
I m pe d a nce 
Conve r ter  

Vi (s) Zin CS) = h (s) = -Z(s) 
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A gyrator is a 2-port device that converts an impedance at its output to appear 
at the input as the reciprocal of that impedance, as shown below. 

Gyra to r  

Describe the similarities and differences in the input impedances to these two 
devices if Z(s) is a pure capacitor , Z(s) = l /Cs. (Consider in particular the 
behavior for s = jw . )  Which input impedance, if either, is indistinguishable from 
the impedance of an inductor? 

b) Both the negative-impedance converter and the gyrator can be described by ap
propriate choices of the parameters in the ABCD representation of a 2-port 
described in Problem 3.8 :  

V2(s) = A(S)Vl (S) + B(s)I1{s) 

h(s) = C(S)Vl {S) + D{s)It (s) .  

Determine the values of  the parameters that describe each device (the answers may 
not be unique) . Are these devices reciprocal (see Problem 3 .5)? 

c) Show that the circuit below behaves as a negative-impedance converter. 

R R 

oo--------------------------------------�o 

d) Show that the circuit on the next page behaves as a gyrator. "N IC" is a negative
impedance converter as in (c) . 
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Problem 3.11 

.., Nv 
N I C  R 
- - - - -
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..., � N IC R 
- - - - - - -

12 ( 5 )  
+ 

R V2 ( 5 ) 

a) Another circuit that can be used to realize a gyrator (see Problem 3 . 10) is as shown 
below. Argue that 

+ .0 ____________________________ __ V ( 5 ) --_0 -

l ( s )  

b) If Z4(8) is a capacitor and the remaining impedances are resistors, the circuit above 

behaves at its terminals as an inductor of value L = RIR��5C4 . The circuit can 
thus be used to replace an inductor in a filter design, provided that the inductor 
has one terminal grounded . Unfortunately, lowpass filters, such as the Butterworth 

filter shown on the next page, have inductors with both terminals above ground. 
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c 

+ 

R 

Butterworth lowpass filter , cutoff frequency = Wo rad/sec. 

3R R 4 
Ll = - Lz = - , C = --

2wo ' 2wo 3Rwo 

One way of using the circuit in (a) to realize such a filter is to observe that if 
all of the impedances in any circuit are divided by ks , then all voltage ratios in 
that circuit remain unchanged. (Convince yourself that this statement is true. ) 
However, inductors get converted into resistors of value L/k, resistors get converted 
into capacitors of value kj R, and capacitors get converted into "double capacitors" 
with impedances l/kCsz . A "double capacitor" can be realized with the circuit 
in (a) if Zl (S) and Z3(S) are capacitors. Use these ideas to find values for the 
elements in the circuit below that will realize a Butterworth lowpass filter with 
cutoff frequency equal to 1000 Hz. Try to keep all resistor values in the range 
10 kO to 100 kO. 

+ 
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A transducer is a system for transforming energy from one form to another. Frequently, 
one of the forms is electrical ; examples are an almost endless variety of mechano
electric devices such as motors, generators, loudspeakers, phonograph pickups , and 
accelerometers , as well as a host of thermo-electric, chemo-electric , optico-electric and 
other devices . The important dynamic behavior of a transducer often corresponds to 
a situation in which the perturbations in the variables about some steady condition 
are small enough that the system can be described incrementally as a linear 2-port. In 
addition , the energy transduction efficiency of many transducers is high enough that 
the device can be modelled as nearly lossless. In these cases, the linear 2-port must 

satisfy an interesting reciprocity condition , as this problem will illustrate. 
a) The diagram below shows a simple mechano-electric transducer constructed from 

a massless plate of area A supported a variable distance x{t) away from a fixed 
ground plane by electrically insulated springs . A mechanical force J{t) can be 
applied to the plate. The plate can also be charged electrically through a flexible 
wire, forming a capacitor with the ground plane . This arrangement describes the 
essential features of a variety of useful devices such as condenser microphones and 
force transducers . 

j ( f )  f (  t l  

+ 

x ( I ) 
rT���������� O 

/ 

The stored energy in this system is 

where 

E[ 
(

) ( )]
_ l{t)x(t) K(x{t) - XO )2 

q t , x  t - 2foA + 2 

q{t} = the electrical charge on the movable plate, 
100 = the permittivity of free space,  

X o  = the resting length of the springs, 

K = the effective combined stiffness of the springs. 

Since the system is lossless , electrical or mechanical work done on the system yields 
a corresponding increase in stored energy. Incrementally, 

�E[q(t), x{t)] = v{t)�q{t) + J(t)�x(t). 

Thus, it must follow that 

( 
) = aE[q{t), x(t)] J( ) = aE[q{t) , x{t)]

. v t aq(t) , 
t 

ax{t) 
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Find formulas for v(t) and I(t} in terms of q(t) and x(t} . *  
b) Assume that each o f  the variables can b e  described as a large constant (quiescent) 

value plus a small perturbation: 

I(t} = 100 + li(t} , 
v(t} = Voo + Vi(t} , 
x(t} = Xoo + Xi(t} , 
q(t} = qoo + qi(t} , 

1 /00 1  » I /i(t} 1 
Ivoo l  » I Vi (  t} 1 
I xoo l  » I X i (t} 1  
Iqoo l » Iqi(t} l · 

Let Fi(S), Vi(s) ,  Ui(S), and Ii(S} stand respectively for the L-transforms of li(tl, 
Vi(t) ,  dXi(t)/dt, and dq, (t)/dt .  Show that these quantities are related by the 
following 2-port equations: 

K qoo Fi (S) = - Ui(S)  + -A Ii ( S) S co S 
qoo Xoo Vi (s) = -A U, (s) + -A Ii (S) ,  co S co S 

c) Note that the cross or coupling terms in the 2-port equations in (b) (Le. ,  the term in 
the force equation proportional to the current, and the term in the voltage equation 
proportional to the velocity) have identical coefficients. This is a reciprocity 
condition of exactly the same sort discussed in Problem 3 .5  for purely electrical 
circuits. Show that such a reciprocity condition holds for any system in which 
the stored energy can be written as a function of the displacement x(t) at the 
mechanical terminal and the charge q(t) at the electrical terminal . t lllNT :  Make 
use of the mathematical fact that 

_a_ ( aE[q(t), X(t ») ) = _a_
( aE[q(t) , X(t») ) 

aq(t) ax(t) ax(t) aq(t) . 

* The internal energy written in terms of generalized "displacements," such as x(t) and q(t), 
is called in physics the Hamiltonian of the system . The partial derivative of the Hamiltonian 
with respect to a particular "displacement" yields the associated generalized "force ." If the 
system contains stored magnetic and kinetic energy, then the corresponding "displacements" 
are the magnetic flux and the mechanical momentum, and the "forces" are the electric current 
and the mechanical velocity, respectively . 
t A reciprocity condition of this kind is called a Maxwell relation in thermodynamics. 
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