THE DYNAMICS OF FEEDBACK SYSTEMS

6.0 Introduction

Adding feedback around an existing system, K(s), yields a new system that
not only may be less sensitive to variations and distortions of K (s) (if, as we
saw in Chapter 5, the loop gain is large), but also in general has different pole-
gero locations than K(s) and thus a different dynamic behavior. The effect of
feedback on system dynamics was extensively studied in the 1940’s and 1950’s
as an approach to the design of control systems. Indeed, Norbert Wiener* and
his followers made feedback control under the name “cybernetics” one of the
cornerstones of a virtually complete philosophical system embracing everything
from automation, to physiological and psychological processes, the behavior of
economic and social systems, and even the discovery of principles of ethics. Time
and the development of alternative perspectives have somewhat diminished this
glorious vision, but feedback control remains both an important concept and a
useful design technique.

6.1 Inverse Systems

The dynamic effect of feedback depends on the magnitude of the loop gain,
B(s)K (s), over the interesting range of frequencies. If the amount of feedback is
“small” (|B(s)K (s)] < 1), then

K(s)

H) = 139K

~ K(s) (6.1-1)

and the dynamic effect of feedback is also small; the poles and zeros of H(s) will
usually be in nearly the same locations as the poles and zeros of K (s). On the
other hand, if the amount of feedback is “large” (|8(s)K (s)| > 1), then

_ Kb 1
1+ B(9)K(s) ~ Bls)

*N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine (New
York, NY: John Wiley, 1948).

H(s) (6.1-2)
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164 The Dynamics of Feedback Systems

The dynamic effect of feedback in this case can be enormous, since the natural
frequencies of H(s) are approximately the poles of 1/3(s) rather than the poles
of K(s).

In the case of a large loop gain, the system function of the feedback sys-
tem is approximately the inverse of the system function of the feedback path.
Employing a feedback system with a large loop gain to realize a system function
inverse to that of a given system is often a useful design technique. An inverse
system is typically desired to help overcome or compensate for the dynamic
deficiencies of some communication, measurement, or control device. For ex-
ample, suppose a sensor responds sluggishly to the changes in some quantity
z(t). In such cases, the transform of the sensor output can often be described as
the product, X (s)Ho(s), rather than simply the transform, X(s), of the desired
signal z(t). The system function Ho(s) thus describes the corrupting effect of
the sluggish sensor. Suppose, however, we could arrange to connect the sensor
in cascade with a system whose system function is 1/Hp(s); then the transform
of the overall response would be X (s)Hy(s)(1/Hp(s)) = X (s), that is, the inverse
system 1/Hp(s) would recover the uncorrupted signal z(t) from the distorted
sluggish output waveform of the sensor.* Feedback is a particularly effective
way to realize an inverse system if the details of Hy(s) are unknown or if they
change with time or environmental conditions; a replica of the original system in
the feedback path should presumably behave similarly under similar conditions.
Feedback may also be useful for synthesizing an inverse system if a system with
system function Hy(s) is easier to build for some reason than a system with
system function 1/Hp(s). The following examples illustrate several applications
of this idea.

Example 6.1-1

It is easy to show by impedance manipulations that the open-circuit voltage transfer
ratio of the bridged-T network in Figure 6.1-1 is as given with frequency response
and pole-zero locations as shown (for large values of a). The inverse of Hy(s) can be
realized approximately by placing the bridged-T network in the feedback path around
an amplifier, as shown in Figure 6.1-2. This circuit will have the system function
H3(s) =~ 1/Ho(s), with pole-zero locations and frequency response as shown. Since the
poles of H2(s) are located at complex frequencies, a passive circuit realizing H2(s) would
have to contain inductors. Several other circuits using feedback to achieve complex
poles with RC elements have been described previously (see Examples 1.3-2, 1.4-2,
4.2-1, and Problems 1.6, 3.11, 4.9, 4.15).

*The process of operating on the output of an LTI system to recover its input is also called
deconvolution, for reasons to be described in Chapter 10. Note that, for reasons discussed
in Chapter 3, an inverse system cannot usually be constructed by simply driving the output
terminals of the original system and observing the signal at the input terminals.
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Figure 6.1-2. Approximate inverse of bridged-T transfer function.
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Note that, since the zeros of a passive transfer function may be in the right
half-plane, attempts to realize the inverse of such a system may lead to an
unstable structure with right half-plane poles. Instabilities in feedback systems
can arise in many ways and set limits on the benefits that can be achieved with
feedback, as we shall discuss in Section 6.3.
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166 The Dynamics of Feedback Systems
Example 6.1-2

The use of feedback to construct inverse systems is not limited to linear systems. Thus
many types of transistors show exponential dependence of collector current on base-
emitter voltage near zero collector-base voltage. The exponential law holds for many
decades. (A similar relationship holds for diodes, but over a smaller dynamic range.)
The circuit shown in Figure 6.1-3 then yields an accurate logarithmic characteristic
that can be exploited in analog multipliers and many other devices.

(I—o1

. —qua/kT
i =ic = I,e %/ or Uy =—— lnI—
s

Figure 6.1-3. A logarithmic amplifier.
>

6.2 Feedback Effects on Bandwidth and Response Time

If the magnitude of the loop gain |3(s)K (s)| is not much greater than 1, then the
overall feedback system response is not 1/0(s), independent of K (s). Neverthe-
less, the overall response may still be dramatically different from the response of
the feedforward path alone, as the following examples illustrate.

Example 6.2-1

Figure 6.2-1 shows the open-loop gain of a typical 741 op-amp. This is a Bode plot

with low-frequency gain ~ 2 x 10°, 6 dB/octave high-frequency slope, and a half-power

bandwidth of about 6 Hz = 40 rad/sec. We may thus represent the op-amp up to fairly
8 x 10°

s+40°

high frequencies by the equivalent circuit shown in Figure 6.2-2 with K(s) =
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Figure 6.2-1. Open-loop voltage gain and phase response of a 741 op-amp as functions
of frequency.

If the op-amp is now connected in the non-inverting amplifier circuit shown in
Figure 6.2-2 with

Ry
b= Ri+R2
then the closed-loop system function is
Va(s)  K(s) 8 x 108

H = = = .
()=o) ~ TTBK() ~ 55 @0+ 8 X 10°5)
The half-power bandwidth has thus been raised to (40 -+ 8 x 10843) rad/sec, which for
typical values of § is very much larger than the open-loop bandwidth of 40 rad/sec.
It is interesting and useful to observe that the product of the low-frequency gain,

8 x 108
40+8 x 1083

H(0)=

+ 0

V,(s)

AN
Ry
R

Figure 6.2-2. Non-inverting amplifier.
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168 The Dynamics of Feedback Systems

and the half-power bandwidth is a constant,

8 x 108

gain X bandwidth (Hz) = ~ 1.2 x 10° Hz

independent of 3. (The value of this constant is often given in op-amp specification
listings as the unit-gain bandwidth.) The Bode plots for the closed-loop frequency
response thus have the form shown by the dotted lines in the preceding figure—the
smaller the required gain, the greater the resulting bandwidth. For example, a 741
op-amp in a feedback circuit yielding a closed-loop gain of 100 will have a half-power
bandwidth equal to 1.2 x 106/100 = 12 kHz. For further discussion of the frequency
response effects of op-amps, see Problem 6.9.

>

Example 6.2-2

As a second example we shall study the effect of feedback on the sluggish response
of a motor speed controller. Mathematically, this system is almost identical to the
feedback amplifier examined in the last example, but the context is different and we
shall emphasize the step response rather than the frequency response.

‘ Tt
] w(?) = angular velocity
i(r) Motor in (rad/sec)

Torque Inerho DO'“D‘"Q

Figure 6.2-3. Description of an electric motor and its load.

The basic system to be controlled is shown in Figure 6.2-3. For simplicity, the
electric motor will be idealized as producing a torque T(t) proportional to armature
current. Mechanically, the motor and load together will be represented by an inertia
J and a damping term B. Let us first study the way in which the shaft speed w(t)
responds to changes in the current i(t). Balancing drive and reaction torques yields

T(t) = kmi(t) = deT(tt) + Bu(t).

The system function relating shaft speed and current is then

s)  kn
Hnl)= 1) = Ts+B

If a step of current #(t) = Ju(t) is applied from rest, then I(s)=I/s and the ZSR is

3 _ _kmI/J _kmI/B _ knI/B
o) = Hin(s)(s) = (s+B/J) s s+B/J
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6.2 Feedback Effects on Bandwidth and Response Time 169

or

w(t) = weo(1 — e~ ™ Yu(t)
where the final velocity is we = kmI/B and the time constant is tg = J/B. The step
drive and motor response are shown in Figure 6.2-4. If the inertia J of the system is
large, the step response will be sluggish. Moreover, both the response time constant
and the final speed depend directly on the mechanical damping B, which is frequently
an unreliable parameter, sensitive to aging, temperature, etc.

pi(1) wl(t)

ww ————————————
I -- |
i
» f 4 —
I fo
Figure 6.2-4. Motor speed response to a step current input.
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Figure 6.2-5. Motor controller with velocity feedback.
A more rapid and reliable response can be obtained by adding feedback to the
motor as shown in the upper part of Figure 6.2-5. A tachometer is a measuring device

(basically an electrical generator) whose output voltage is proportional to input shaft
velocity:

vi(t) = Bw(t).
The amplifier is described by the equation
1(t) = Kve(t).

Hence the system can be represented by the block diagram in the lower part of Figure
6.2-5. The form of the overall system function H(s) is the same as for the unfedback
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170 The Dynamics of Feedback Systems
system Hyn,(s), but the pole is at —(B + 8K km)/J instead of —B/J:

QUs)  KHnm(s) _ Kkn/J
V(s) 1+PBKHmn(s) s+ (B+BKkm)/J

H(s)=

Consequently, for K > 0 the bandwidth is larger and the step response

_ KkaV o, J
T B+PBKk,' ° B+ pBKkm

w(t) = u(1 - C—'t/i")u(t) where  Woo

is faster than before, as shown in Figure 6.2-6. Note also that both the time constant of
the response and the final motor speed in the feedback system are largely independent
of the damping B if K is large enough.

dv(n)

Figure 6.2-6. Response of the feedback system to a step input.

As BK — oo, the response time of the feedback system to an input step change
in desired speed theoretically goes to zero, and the final speed depends only on the
tachometer calibration 8. What limits the improvements that can be achieved in
practice? One problem is that as BK grows, so does the peak input current to the
motor. To see this, treat I(s) as the output of the feedback system and compute

fo)= KV K(s+B/IWV
1+ BKHu(s) s(s+B/J+BKkm/J)
_ @wB/km G BK
- s s+ B/J+BKkny/J "

The corresponding time function i(t) = Geo[B/km + 8Ke ™/ EO]u(t) is sketched in Figure
6.2-7.

Physically, a large initial current is necessary to provide sufficient torque to quickly
overcome the inertia of the motor and load. However, burnout and saturation effects

it

Figure 6.2-7. Armature current for a step input to the feedback controller.
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6.2 Feedback Effects on Bandwidth and Response Time 171

limit the applicable range of our simplified representation of the motor to input currents
less in magnitude than some maximum /max. Assuming that the worst transient results
from a sudden reversal from maximum velocity wmax in one direction to the same speed
in the opposite direction, we leave it as a simple exercise to show that the loop gain

must not exceed

ﬂK < Imax _ 2
2wmax m
>y
Example 6.2-3
it w(t)

vit)
——] Controller

Vr(f)

< B

Figure 6.2-8. A non-linear motor controller.

In control systems of the kind described in Example 6.2-2, where certain internal
variables are constrained, improved performance can often be obtained by replacing
the linear feedback system with one containing a non-linear controller, as illustrated in
Figure 6.2-8. The properties of the controller are described by the following equation:

+Imax, v(t) > we(t)
Bo® )= wie)

Bkm '
—Imax, v(t) < we(t).

i(t) =

Whenever the speed differs from that desired, maximum current (torque) is applied to
correct the error as soon as possible. As soon as the speed reaches the desired value,
the current is set equal to the value required to maintain that speed in the steady
state.* The performance of this system in response to a step change from rest is readily
calculated as in Example 6.2-2 and is shown in Figure 6.2-9.

*In practice, such an extreme example of a “bang-bang” controller would probably not be very
satisfactory—drift in the value of B/Bkm or small rapid fluctuations (noise) in either the input
or the output in the steady state would yield large rapid “hunting” swings in #(t). A more
practical scheme would include a region where the error, v(t) — vt (t), is small but not zero and
in which #(t) is proportional to the error, as in the linear feedback system previously proposed.
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Figure 6.2-9. Step response of non-linear controller.

For comparison, the response of the linear feedback system is shown dotted in
Figure 6.2-9, assuming 5 and K are adjusted to give the same final velocity and the
same maximum current. Under these circumstances the time constant of the linear
response is 3 = JI,/Blmax. Thus, provided that I, « Imax, the time t; that the
non-linear controller takes to reach the desired final speed is equal to the time %
that the linear feedback controller takes to get within 1/e of the desired final value.
The initial rate of change of w(t) is the same for both systems. However, the non-
linear-controller system maintains (almost) this same initial rate for some time, and
thus reaches the desired speed in substantially less time than is required for the linear
feedback system to approach this speed. And the comparison would be even more
favorable to the non-linear controller if the gain of the linear system had not been
optimally chosen for precisely this speed change. It is because of improvements of this
kind that “controller” approaches to control-system design have today largely replaced
the “feedback” approach popular a few decades ago.
>

6.3 Stability

The available dynamic range of certain internal system variables often limits
the practical improvements in performance that can be achieved with linear
feedback—as Example 6.2-2 showed. But another difficulty is perhaps even more
common. As the loop gain is increased, poles of the closed-loop system may be
moved into the right half-s-plane, yielding an unstable system.

In general, a physical system is said to be stable if any small perturbation
in the conditions under which it is being operated (in the drives or initial state)
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6.3 Stability 173

produces only a small perturbation in the behavior (response) of the system.
For linear systems, an equivalent statement is that Bounded Inputs in the zero
state yield Bounded Outputs (BIBO).* Evidently, a necessary condition for
BIBO stability (as mentioned in Chapter 4) is that the natural frequencies (the
poles of the system function) must lie in the left half-plane (Lh.p.); otherwise
a step function (a bounded input) would initiate an unbounded response. For
circuits such as we have been considering—composed of a finite number of
elements and having system functions that are well-behaved at s = co—the
Lh.p. condition is also sufficient. (We shall discuss a generalization in Chapter
10.) Circuits composed of positive R, L, and C elements (passive circuits) are
always stable, as noted in Chapter 4. (Pure lossless circuits—containing L’s
and C’s but no R’s— are perhaps marginally stable, since such circuits have
poles on the jw axis and will give unbounded responses to bounded sinusoidal
excitation at their natural frequencies; see Example 10.3-1.) Circuits containing
controlled sources, however, may be either stable or unstable; typically they will
be stable if the controlled-source gains are small enough (since for zero gains
the circuit is composed of positive R’s, L’s, and C’s only) but may become
unstable as the gain(s) are increased beyond some critical value(s). Thus it is not
surprising that stability problems often limit the advantages of feedback, since
such improvements depend, as we have seen, on large loop gains.
For a simple feedback system with system function

K(s)
He) = 1Bk

the natural frequencies are the zeros of 1+ 3(s)K(s).! An important part of the
feedback system design process is to explore the zero locations of 1+ 3(s)K(s) as
a function of various design parameters (such as the magnitude of the forward
gain or the fraction of the output fed back) and to discover (if possible) ways to
modify the design if the desired performance is not realized with a stable system.

Example 6.3-1

Let 8(s)K (s) = u/(rs + 1)°, which might describe the moderate-frequency behavior of
the loop gain of a 3-stage feedback amplifier. The quantity y is the loop gain at low
frequencies; to reduce output distortion we wish u to be as large as possible. Stability
requires that the zeros of 1+ B(s)K(s) = [(rs + 1)° + ul/(rs + 1)® have negative real

*More fundamentally, we should demonstrate for a stable system that all internal variab

well as the designated outputs remain bounded. It is enough to show that the state variables
remain bounded; this is called stability in the sense of Liapunov as contrasted with BIBO
stability. A non-linear system may be stable for some inputs and initial states but not for
others. We shall give an example of the importance of Liapunov stability in the next section.

!Since K (s) appears in both numerator and denominator, poles of K (s) will not be poles of
H(s) unless they are also zeros of ((s). It is also possible for a zero of 1+ ﬁ(s)K(s) not to be
a natural frequency of H(s) if K(s) and A(s) have a zero and a pole, respectively, at the zero
of 1+ B(s)K (s).
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174 The Dynamics of Feedback Systems

parts. There are general formulas for finding the roots of a cubic polynomial, but they
are clumsy. In the present case, it is clear that the numerator is zero when

rs+1=(—p)

That is, the roots of (rs+ 1)3 +u =0 are
1 1 ey 1 L
s==(=1=u®), (14 #ET), S(c1hpteE),

The loci of the roots, as functions of u, are shown in Figure 6.3-1. For —1 < u <8
the roots all lie in the Lh.p.; for u < —1 there is one real zero in the r.h.p., and for
i > 8 there are two conjugate zeros in the r.h.p. If the system is to be stable, then, the
low-frequency loop gain cannot exceed 8. In practice, a value substantially less than 8
would probably be chosen—to give a stability margin, and to yield a transient or step
response without the substantial ringing or overshoot that often results from a system
pole pair close to the jw-axis.

The numbers indicate the values
of u yielding the corresponding
root locations.

—0

Arrows indicate the directions in
which the root loci move as p
increases from -8 to 8.

Figure 6.3-1. Root loci of (75 +1)3 + p.
>

Sketching the root loci of 1+ 3(s)K(s) = 0 as above can be an important
aid to feedback system design. Fortunately, simple techniques exist for finding
the approximate pattern of the root loci without actually finding the roots
analytically—see, for example, J. K. Roberge, Operational Amplifiers: Theory
and Practice (New York, NY: Wiley, 1975) Chapter IV, or almost any book on
linear control theory.

A test, called the Routh test, is also available to determine whether all the
roots of a polynomial lie in the 1.h.p. The Routh test proceeds directly from the
coefficients of the various terms in the polynomial and does not require finding
the roots analytically. Unfortunately, the Routh test gives no information about
the location of the roots except the half-plane in which they lie; it thus provides
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no insight into relative measures of stability that depend on the proximity of
the poles to the jw-axis, or the balancing of time and frequency responses.
Nevertheless, it is frequently useful in conjunction with other procedures.

Certain special aspects of the Routh test, however, have broad applicability

and can be summarized as follows:

1.

2.
3.

Necessary conditions for a polynomial to have all its roots in the Lh.p. are:
i) All of the terms must have the same sign;

ii) All of the powers between the highest and the lowest must have nonzero
coefficients, unless all even-power or all odd-power terms are missing.

For quadratic polynomials these conditions are also sufficient.

For a cubic polynomial, s34+ as?+ 85+, necessary and sufficient conditions
(NASC) are a,8,7>0 and 3> v/o.

The following example illustrates the application of these rules.

Example 6.3-2

1.

52— 3s + 2 does not have all its roots in the L.h.p. because two of the terms have
+ signs and one has a — sign. Indeed, s2 —3s+2 = (s —2)(s —1).

. 85+ 8% 4+ 10s? does not have all its roots in the Lh.p. because the s* term is

missing. Indeed, s®+53+10s% = s%(s+ 2)(s — 1 + 72)(s — L — 52). Also we note that
5°4 5%+ 10s% = s%(s® + 5+ 10) and the cubic factor does not satisfy the NASC for
cubics in the third rule above.

. s* + 5% + 45 + 30 satisfies the necessary conditions under the first rule above, but

in fact s3 + 5%+ 45+ 30 = (s + 3)(s — 1 + 73)(s — 1 — 53) so these conditions are not
sufficient. Of course, this polynomial does not satisfy the NASC in the third rule.

. 8* + 1352 + 36 satisfies all the necessary conditions and in fact has all of its roots

on the jw axis: s* + 1352 + 36 = (s +72)(s — 72)(s + 73)(s — 53). Note that the
roots of the polynomial 22+ 13z 4 36 are negative real, as is clearly required if the
s-roots are to be pure imaginary.

. s* 4652 + 25 satisfies all the necessary conditions but has its roots in both half-

planes at mirror-image points: s* 4652 +25 = (s —1+52)(s—1—52)(s +1+52)(s +
1—32). Note that the polynomial 22 + 6z + 25 has complex roots.

> > >

Example 6.3-3

The characteristic polynomial in Example 6.3-1 was

3 3 1+pu
3 3f 3 2 .
(rs+1) +u=r1 (s +-s"+5s+ 3 )

The NASC from the third rule for cubics above gives

3 1+uz
T2 3 3
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176 The Dynamics of Feedback Systems

or
<8

when u is positive. When u is negative, we must satisfy 1+ u > 0 or the last term will
have a negative coefficient. Hence the stable region is

~1<u<8

as previously determined by plotting the locus of the roots.
[ 3 2

Example 6.3-4

ANAv——](E
I\
o—++o o
+ +
R volt) v, (1) Ky (1)
T !

Figure 6.3-2. A simple RC audio oscillator.

Figure 6.3-2 is a much simplified diagram of one of the first successful products
of the Hewlett-Packard Company, an RC audio oscillator. To determine the condition
for oscillation, open the switch and compute the loop gain:

)
Vo(s) _ R+(5) __ K(RCy)
Va(s) R(i) . (RCs)2+3(RCs)+1"
—Csl— +R+ (E)
R+(5)

With the switch closed, the circuit will be unstable if the values of s for which the
open-loop gain Vg(s)/Vi(s) =1 lie in the r.h.p. Equivalently these are the values of s
for which

(RCs)* +(3—K)RCs)+1=0.

If K = 3, the natural frequencies will lie precisely on the jw-axis, so that—once
started—sinusoidal oscillations will be produced. In practice, K is designed to be
slightly greater than 3 so that the poles lie inside the right half-plane and the oscillator
is self-starting. As the amplitude of the oscillations builds up, a resistor (not shown) in
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6.4 Feedback Stabilization of Unstable Systems 177

the amplifier changes value slightly, reducing the gain; the amplitude stabilizes at the
value that yields an effective K of 3. The frequency of the oscillation is then the root
of

(RCs*+1=0
or w=1/RC. The frequency can be changed over a very wide range by making the
two resistors variable and ganging them together.
| g

The root-locus and Routh stability tests for feedback systems require that
A(s) and K(s) be known rational functions of s. But often information about
B(s) and K (s) may be given in other forms, such as non-rational functions or
experimentally determined magnitude and angle plots of open-loop frequency
response. In such cases a graphical stability test due to Nyquist is most useful,
as discussed in the appendix to this chapter.

If we examine the behavior of a closed-loop system in the sinusoidal steady
state, it is easy to explain physically (rather than just mathematically) why large
values of loop gain may lead to instabilities. Thus suppose there is a frequency
s = jw for which the loop gain S(jw)K (jw) has an angle of 180°. Then (including
the minus sign in the comparator) the signal returned and added to the input
will—at this frequency-—be precisely in phase with the input. If, furthermore,
the magnitude of the loop gain at this frequency is equal to unity, then the
amplitude of this returned signal will be equal to the input amplitude. Once
such a returned signal is established, the input could be set equal to zero and
the signal in the loop and at the output would maintain itself! For larger values
of loop gain, any incidental disturbance will start an oscillation at this frequency
that will grow; that is, the system will be unstable. To avoid instabilities, then,
we must ensure that the magnitude of the loop gain is less than unity at any
frequency at which the angle of the loop gain is 180°. (There are some interesting
exceptions to this rule—see the appendix.)

The value of the loop gain at lower frequencies can be increased—and
the effectiveness of feedback at these frequencies enhanced—if a compensating
network is included in the loop to reduce the loop gain at higher frequencies
where the phase angle of the loop gain approaches 180°. This scheme is explored
further in the appendix and in Problem 6.6.

6.4 Feedback Stabilization of Unstable Systems

Feedback around a stable system can produce instabilities by in effect moving
poles from the left to the right half-plane. On the other hand, feedback can
also be used to stabilize an inherently unstable system, as the following example
illustrates.

Example 6.4-1

Consider an inverted pendulum attached by a hinge to a car free to move along a

horizontal track. Our objective is to design a driving system for the car that will use
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178 The Dynamics of Feedback Systems

signals derived from the car and pendulum motions to stabilize the pendulum in its
inverted position. The whole scheme may be considered a one-dimensional simulation
of the common parlor trick of balancing a ruler or broom stick on end on your palm
by moving your hand appropriately. The details of what we have in mind are shown
in Figure 6.4-1.

It is straightforward to derive from the elementary mechanics of rigid bodies that

mglsinf — mli cosf = I6

where the dots imply differentiation and the variables and parameters have the mean-
ings defined in Figure 6.4-1. For small angles this equation may be linearized to

I6 — mgtf = —mli
which implies that 6(t) and z(t) are related by the system function

_ O(s) —mls?

H(s) X(s) Is?—mgl

which of course is unstable.

As a first attempt at stabilization, connect a rotary potentiometer as shown
in Figure 6.4-1 to the pivot shaft of the inverted pendulum from which a voltage
proportional to 6(t) can be derived. Apply the difference between 6(t) and the desired
value 6o(= 0) through an amplifier to drive the motor in such a direction as to increase
z(t) if 6(t) — 6o is positive. Assume that the motor and pulley system can be described
by the system function

X)) __fem

M) =315 = 61 )
That is, the motor produces in the steady state a velocity Z(t) proportional to the
applied voltage v(t) (independent of load) and the velocity responds to changes in v(t)
as a first-order system with time constant 1/a.

The block diagram for this closed-loop system is shown in Figure 6.4-2. If we take
fo as the input, the system function is

Z
() = 8L) _ —KM(s)H(s) _ Khn s
= Bo(s) T T=K M(s)H(s)

s3+as?+ mTe(Kkm —g)s— EI—[ga
Because of the minus sign in the constant term of the denominator, the system of
Figure 6.4-2 remains unstable for any value of K. Physically, the trouble is that a
steady angular error in the system of Figure 6.4-2 leads only to a steady velocity of the
car. But movement of the car at constant velocity has no effect on the angular motion
of the pendulum; to produce a restoring torque, the car must be accelerated.
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] - (1) a(1)
° -+ K mis) X > H(s) >

<
-

Figure 6.4-2. Block diagram for a first attempt at stabilization.

Such an effect can be obtained by adding an additional feedback path proportional
to the integral of 8(¢). The resulting block diagram has the form shown in Figure 6.4-3
and is characterized by the system function

i o(s) —K M(s)H(s)
H(s)= =
8 Oo(s) 1 _<1+S>KM(S)H(S)
ml
KkaS

s34+ as?+ mT[(Kk,m —g)s+ z;f(Kk,ma—ga)

From the special case of the Routh test given earlier for the cubic, it follows that this
system will be stable if a < o and Kk,a > ga, conditions that obviously can be met
by appropriate choices of a and K.

x(t) 6(t)
M(s) b— H{(s)

v

I+5 |

Figure 6.4-3. An improved stabilization system.
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However, despite the fact that the feedback system of Figure 6.4-3 has theoreti-
cally “stabilized” the inverted pendulum, the scheme would not work very well in
practice. There are two difficulties. First, inserting practical numbers for the various
parameters will show that, although the system poles can be placed in the left half-
s-plane, it will probably be difficult to move them very far from the jw-axis. As a
result, transient disturbances of the pendulum would be only slowly corrected, and in
an oscillatory manner—a series of modest but rapid disturbances could lead to failure
by driving the system beyond its linear range. The factor primarily responsible for
this effect is the probably small value of «, describing the frequency response of the
motor. But this difficulty is not fundamental since, as in Example 6.2-2, the response of
the motor can be speeded up by connecting a tachometer to provide velocity feedback
around the motor, as shown in Figure 6.4-4. It is easy to show that the system function
of this block diagram is H(s) of Figure 6.4-3 with a replaced by o’ = a + Kkmb. The
“gettling time” of the new system can consequently be significantly reduced.

bs =

M(s) H(s) >

I +5 e

Figure 6.4—4. Further improvements.

A second difficulty with the system of Figure 6.4-3 (or Figure 6.4-1) is more subtle.
Consider the system function describing the displacement z(t) of the car, which is

2_ M4
X(s) _ H(s) _ _Kk'"(s T )

- l '
Bo(s) H(s) 3[83 +a's?+ mTe(Kk:m —g)s+ mT(Kkma —ga )]

This system has a pole at s = 0 and is thus only marginally stable—a succession of
random disturbances will induce a “random walk” in the car’s position that will sooner
or later cause it to go off one end or the other of the track. This can be avoided by
adding still another feedback path, ag in Figure 6.4-5.
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[}

a(t)
M(s) > H(s) >

a
|+? -

Figure 6.4-5. The final stabilization system.
The input-output system function now becomes

H(s)=

Kkm %—232

, £
st +a's3+ #(Kkm—g)+Kkmc s? +z;—e(1{kma—ga )s-chkmmT

It is apparent from the sign of the last term in the denominator that stability has
been upset unless ¢ is negative—which implies that deviations of z(t) from its zero
position will induce motor inputs in a direction that makes the error worse. But a
little reflection on how you move your hand balancing a pointer will make it clear that
this counterintuitive result is indeed correct. To achieve an ultimate motion of your
hand to the right, you must first move it sharply to the left, displacing the pendulum
angle to the right so that you can then steadily move your hand to the right under the
pendulum. A full study of the Routh conditions for this 4P order polynomial shows
that stability now requires

me a go'

Ic (1 a')(l Kkma) >1
in addition to the conditions a < a’ and Kk,,a > ga’ already given for the earlier cubic.
The coefficient ¢, in addition to being negative, must thus not be too big. Examination
of the system function for X (s)/©¢(s) shows that the pole at s = 0 has in fact now been
removed, so that with appropriate parameter choices our final design (Figure 6.4-5)
should give satisfactory behavior for both angle §(t) and car position z(t).

This example illustrates the importance of looking at the stability of internal
variables as well as input-output variables—which, as mentioned earlier, is called
stability in the sense of Liapunov.
>> >
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6.5 Summary

Feedback can both reduce the sensitivity of a system to various parameter
changes and loading effects, and also dramatically change the dynamic response
of the system by altering the locations of the system poles. The latter effect can
be useful, for example, in speeding up the response (or increasing the band width)
of a control system or amplifier, or in stabilizing an inherently unstable system
such as the inverted pendulum. But feedback can also move system poles into
the right half-s-plane and thereby change a stable system into an unstable one.
Often stability considerations set limits on the sensitivity reductions that are
realizable with feedback.
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APPENDIX TO CHAPTER 6
The Nyquist Stability Criterion

The Nyquist stability criterion is based on an examination of the locus or polar plot
(called the Nyquist plot) of the complex number 3(s)K(s) as s ranges along a contour
following the jw-axis and around the right half-plane. The Nyquist plot, as shown in
Figure 6.A-1, is thus a mapping into the BK-plane of the closed contour C shown in
the s-plane.

bjw
b s-plane

}Im[BK]

—

map of
jw-oxis w<0
map of
circular
-1 2 portion

o ~ L/

Q

o
0
™
™

X,

c w>Q

Figure 6.A-1. Contours in the s-plane and SK-plane.

The foundation for the Nyquist criterion is a theorem from function theory called
Cauchy’s Principle of the Argument. This theorem in general compares the contour
generated by some function X(s) in the X-plane as s traces clockwise around any
simple contour in the s-plane. It states that the net number of clockwise encirclements
of the point X (s) = 0 by the closed contour in the X -plane is equal to Z — P, where
Z is the number of zeros of X(s) and P the number of poles of X(s) enclosed by the
contour in the s-plane. Cauchy’s Principle of the Argument is easily demonstrated for
a rational function

X(s) = A(s —z1)(s—23)-+-
(s =p1)(s —p2)---

by recalling from Chapter 4 that the angle (or argument) of X (s) (assuming A is real)
is the sum of the angles of the vectors (s — z;) minus the sum of the angles of the
vectors (s — p;), as illustrated in Figure 6.A-2. To be specific, suppose the contour in
the s-plane is the contour C shown to the left in Figure 6.A~1. Consider a zero (or pole)

Figure 6.A-2. ZX(s)=61 +02— ¢ — ¢2.
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outside the contour C, as shown to the left in Figure 6.A-3. As the point s traverses
the contour, the angle of (s — 21) (or (s — p;)) varies, but it returns to its initial value
when the contour is completely traced. If, however, z {or p,) lies inside the contour, as
shown to the right in Figure 6.A-3, there is a net decrease in angle of 27 radians as the
contour is traversed. Since the contributions of the individual terms add (subtract),
the desired result follows immediately.*

) s-plane [} s-plane

Z,

P .
S
¢ Sc

Figure 6.A-3. Zeros outside and inside a contour.

To derive Nyquist’s criterion, set X(s) = 1+ 3(s)K(s) and require that the radius
of the semicircular part of the contour C be very large. Then the number of clockwise
encirclements of the origin by the X(s) contour, or equivalently the number of clockwise
encirclements of the point 8(s)K(s) = —1 by the B(s)K(s) contour, is equal to the
difference between the number of zeros and the number of poles of X(s) in the right
half-plane. Since zeros of X (s) are poles of the closed-loop feedback system and poles
of X(s) are poles of the loop gain B(s)K (s), the closed-loop system will be unstable if
the number of clockwise encirclements of 3(s)K(s) = —1 by the B(s)K(s) contour is
greater than the number of poles of 8(s)K(s). This is Nyquist’s criterion.

To apply this test, it is often helpful to carry out the following imaginary experi-
ment. Pretend that there is a nail driven into the BK -plane at 3(s)K(s) = —1 and that
a §tring is tied to the nail so tightly that it cannot slip. The other end of the string is
tied to a pencil. Starting anywhere, trace with the pencil entirely around the contour
in the direction implied by a clockwise encirclement of the right half-s-plane. The net
number of times that the string ends up wrapped around the nail in the clockwise
direction is equal to the number of —1’s of A(s)K(s) in the right half-plane (minus
the number of poles of B(s)K(s) in the right half-plane, if any). In the sketches in

oK2 X2 0 o X2 XX 2)

Figure 6.A-4. The numeral is the number of clockwise encirclements.

*The theorem actually applies to a wider function class than rational functions. For a more
complete discussion see H. W. Bode, Network Analysis and Feedback Amplifier Design (New

York, NY: Van Nostrand, 1945) p. 147ff, .
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Figure 6.A-4, the numeral indicates the number of clockwise encirclements if the point
B(s)K(s) = —1 lies in the corresponding region.

Example 6.A-1

A Im[BK]
M

Figure 6.A-5. Polar plot of /(s +1)3.
Continuing Example 6.3-1, Figure 6.A-5 shows a polar plot of

BOK() = (o

For u =1, the —1 point is well to the left outside the contour. For u = 8, the scales of
ordinate and abscissa are multiplied by 8, and the —1 point coincides with the point
on the contour labelled w = v/3; for large p the point —1 lies inside the contour and in
fact is encircled twice, implying two zeros in the right half-plane. For negative u, the
contour is flipped over right for left; the point —1 will lie inside the contour, encircled
once (implying one zero in the r.h.p.) for u < ~1. Thus the closed-loop system will be
stable for —1 < u < 8, as was previously demonstrated directly. Note that although
we used an analytic formula for G(s)K(s) to calculate the values of the loop gain for
various frequencies, measured sinusoidal steady-state values would have worked as well.
This point is illustrated in the next example.

>r

Copyrighted Material



Appendix to Chapter 6 187

Example 6.A-2

Figure 6.A-6 is a sketch of |8K|/u and ZBK /u vs. w as might have been measured as
the loop gain of some feedback system. (Actually these curves are the Bode plot for

B(s)K(s) _ (1 + §d>

7] B (1+s)?
as constructed in Example 4.4-2.)
BK BK
201log,g — Ladh
0% 4, ! 10 100 10004 &7
} —+ t > w
-20 magnitude -50
60dB/decade -
-40
-60
T-180
-80
_ +-270
100 20 dB/decade

Figure 6.A-6. Measured loop gain.
BK
p1ml5r]

e mmm—mm—— T ==

Figure 6.A-7. The shape of the Nyquist plot for 8K /u of Figure 6.A—6.

For stability analysis, interest centers on the Nyquist plot of SK /u near the real
axis, as shown schematically in Figure 6.A-7. Clearly for u < 10 (approximately)
the system is stable, whereas for 10 < u < 10* (again approximately) it is unstable.
But, remarkablly, if x > 10*, the system is again stable! This type of conditional (or
Nyquist) stability is occasionally observed. Prior to Nyquist no one had understood
how it was possible for an amplifier to be stable in spite of the fact that there was
a frequency at which the returned sinusoidal signal was in phase with and larger
than the sinusoidal input. Conditional stability may help explain the observation that
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overdriving an amplifier will sometimes cause it to oscillate—despite the fact that
(because the dominant non-linearity is usually a saturation) the effect of overdriving is
to a first approximation often an effective reduction in gain.

> > >

Example 6.A-3

Continuing Example 6.3-1, it should be clear from the Nyquist plot of Example 6.A-1
(reproduced in Figure 6.A-8 below) that performance would be improved if a compen-
sating network could be inserted in cascade with either 5(s) or K(s) that would add a
positive phase shift to the loop gain for frequencies around w = 1 without substantially
changing the magnitude for w < 1—for example, as shown by the dashed contour in
Figure 6.A-8.

4 Im[BK]

Figure 6.A-8. Nyquist plot of Example 6.A-1 with compensation (shown dashed).
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The improvement in performance that could be provided by compensation can be
measured in several ways:

a) The maximum value of u yielding stable perforfmance would be increased from
just less than 1/0.125 = 8 to just less than 1/0.041 =24.2.

b) For a gain less than the maximum allowed stable value, the gain margin is defined
as the ratio of the maximum allowed stable value to the actual gain. (That is,
for any selected value of y, the gain margin is;" the reciprocal of the actual gain
at a phase angle of —180°.) Thus if the chosen value of gain were 6, the gain
margin would go from 8/6 = 1.33 without compensation to 24.2/6 = 4.03 with
compensation. As a rule of thumb for electronic amplifiers, gain margins of 3 or
more are considered desirable.

¢) Again for a gain less than the maximum allowed stable value, the phase margin is
defined as the difference between —180° and the angle of the loop gain B(s)K(s)
at the frequency w where the magnitude of the loop gain is 1. For a chosen gain
of 6, the phase margin goes, as shown, from about 17° without compensation to
about 38° with compensation. Again as a rule of thumb, phase margins of 30° to
60° are considered desirable.

As we shall see in Chapter 16, the magnitude and angle of the sinusoidal frequency
response of a causal network are not independently selectable. Hence arbitrary adjust-
ments of Nyquist plots are not possible. The compensation shown in the dashed line of
Figure 6.A-8 was obtained by cascading 8(s)K(s) with a lead network whose system

transfer function is
s+1

5 .
10 +1

A Bode plot of G(jw) is shown in Figure 6.A-9; the name “lead network” comes from the
fact that the positive phase angle of G(jw) implies that a sinusoidal output waveform
“leads” (reaches its peak value before) the input. The key to the success of the lead
network is that it produces substantial phase shift (~ 40P at w = 1) before it produces
a significant increase in gain (|G(j1)| =~ 1.4).

G(s)=

|G{jw)|(dB)

-90°+  TTTTTT=

Figure 6.A-9. Magnitude and angle of the lead network response G(jw).
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With the lead network inserted in the loop, the loop gain becomes

B(s)K (5)G(s) = —————
(s + 1)2(110 + 1)
and

53 +12s% +21s + 10(1 + p)
(s+1)2(s+10)

1+ B(s)K (s)G(s) =
Stable positive values of x4 (from the Routh test) thus satisfy

21>¥;’L) or u<24.2.

For the maximum value of u,
§° +128% + 21s 4+ 10(1 + ) = (s + 12)(s® + 21).

These calculations determine the magnitude and frequency of the Nyquist plot at
the point where it crosses the negative real axis. For further consideration of this
compensation scheme see Problem 6.5.

>> >

Example 6.A-4

Suppose that

I ChE))
PEOK() = i3

The loop-gain system function is unstable because of the pole at s = +3. However, the
Nyquist diagram appears as shown in Figure 6.A-10. The values in the table in Figure
6.A-10 take into account the fact that BK has a pole in the right half-s-plane. Hence,
for 1+ 8K not to have zeros in the right half-plane, the Nyquist contour must have one
counterclockwise encirclement of —1. This occurs for u > 2. For these values of gain
the overall amplifier with the loop closed is stable, in spite of the fact that if the loop
were opened the amplifier would oscillate. This is another example of how feedback
can be used to stabilize an unstable system.
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A Im [BK/u]

+

Range of 1

©r O(:}(_<:J\>‘“°° —> Re [BK/u]

0<p<3/2
3/2<pu<2
w>2

Figure 6.A-10.

> D

w>0
Number of CW
encirclements Number of r.h.p.
of K = —1 closed-loop poles
0 1
1 2
-1 0

Nyquist plot for Example 6.A-4.
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EXERCISES FOR CHAPTER 6

Exercise 6.1

For the circuit below, find the values of x4 and a such that the response, va(t), to a
unit step, vi(t) = u(t), has the same final value but rises ten times faster than the step
response that would be obtained with @ =0 and u = 1. Answers: @ =0.9, ¢ = 10.

valt) <+

+ =
(1)
Q'DV' (1-a)R

vol 1)

iq{t}=0
aR i
Exercise 6.2
R
AN
Ro Vi(s), Rol(s) Vls)
AN o — Kis) >
. A
v(s) IS} )alls) | == vy(s)
i_; B(s) |
(0) (b)

a) Show that the feedback amplifier of (a) can be represented by the block diagram of
(b) with K(s) =(a/ReC)/(S +1/RC) and B(s) = —Ro/R. (Note that the output
of the summation box in (b} is specified to be the quantity RoI(s).)

b) Show that the amplifier is stable if —o0 < a < 1.
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Exercise 6.3

+ s

Y
(

x(t) - (s+1){s+a)

e

a) Determine a and b for the system above so that the overall system function becomes

y(t)

S

Hs)= (s+2)(s+3)

b) If @ = 2, what is the range of values of b for which the system is input-output
stable?

¢) Determine the unit step response of this system if the system function is as in (a).

Answers: (a) a=4,b=2; (b) b> —2; (e) ()= (6_2‘ - e‘“)u(i).

Exercise 6.4

a) An (unstable) LTI system has the response y(t) to a unit step input z(t) as shown
below. Show that the system function for this system is

S—Q
A x(h) yltr
) S
x(t) = ult) y(f):—('J—-(eﬂ’-—l)u(r),a>O

b) To stabilize this system, apply feedback of the form
Bs)=1+a)+s.
Show that the overall system now has the unit step response shown on the next

page with 7 = 2 sec.
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+ H(s) >

t B(s)

Exercise 6.5

y(t)

G(s) |

For what values of K ,—c0 < K < oo, will the overall system be stable if G(s) has the

following forms:
2

a) G(s) = sj-l'
s
c) G(s):sjz.

Answers: (a) K > —1; (b) 8>K >—1; () K>O0.
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PROBLEMS FOR CHAPTER 6

Problem 6.1

Vo(s)

a) Find the zero-frequency gain of this system, assuming that K, and K are picked
so that it is stable.

b) For what range of (real) values of K; and K will the system be stable?
¢) Find and sketch the unit step response for K, = -3, K; = 2.

Problem 6.2
‘\Sl\r I iz0 non-inverting input
! —0
vy ¢ ¥ * a>0
I valt) v

Ca

inverting input

[ =

R|=|Okﬂ C|=OO|}LF R2=5kﬂ C2=

The diagram to the left above is intended to function as an integrator. Unfortunately
the draftsman forgot to label the inverting and non-inverting terminals at the input to
the op-amp, and he neglected to give one of the capacitor values.
a) Modelling the op-amp by the equivalent circuit shown to the right above with
wire “a” connected to the non-inverting terminal of the op-amp, find the system
function of the integrator circuit.

b} Should wire “a” be connected to the inverting or to the non-inverting terminal to
ensure stable performance? Explain your answer. Does your answer depend on
the magnitude of o?

¢) Assuming that o — oo in the stable connection of the op-amp, determine the value
of the unlabelled capacitor_to yield ideal integrator behavior.
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Problem 6.3

y(t)

as

s2+Bs+y

a) Find the ZSR Y (s) = L[y(t)] in terms of X (s)= L[z(t)] and Z(s) = L[2(t)] for the
system above.
b) What conditions on ¢, §, and ~ will ensure stability of this system?

Problem 6.4

Let K(s) = u/(s+ 1) and B(s) = s/(s + @) in the conventional Black block diagram of

a negative feedback system. \
X3

a) On a sketch of the a-u-plane (as at
the right), cross-hatch the region within
which the feedback system will be stable.

b) For o = 4, sketch in the complex s-plane
the locus of the zeros of 1 + (B(s)K (s) as
a function of u, —00 < u < o0.
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Problem 6.5

Consider the inverting op-amp circuit shown below. Assume that the op-amp is ideal
to the extent that its input impedance is infinite (zo(t) = 0) and its output voltage is
independent of load (output impedance = 0), but that it is non-ideal in that its gain
K(s) is not infinite and not a constant.

Vo(s) aR

a) The asymptotes of the Bode plot for |K(jw)| are shown below. Assuming that the
op-amp is stable and has a rational system function with K(0) > 0, find K(s).

§2010g |k (ju)|

120
100
80

20 dB/decade

60
40
20

0]

____________________ /4odB/decode

|
|
!
I
1
I
I
|
t
|
|
1
+
1
'
1

| | 1 |

|
I 10 102 10® 10* 10° 10° N\ o’

1 » wz=27mf

b) Find the overall system function, H(s) = V2(s)/Va(s), for this circuit.

¢) Find the value of o for which H(s) has a second-order pole on the negative real
axis. Make reasonable approximations.
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Problem 6.6

The circuit below shows one way of adding lead compensation to a non-inverting
amplifier. K(s) represents the system function of the op-amp itself, reflecting primarily
the high-frequency shunting effect of various internal capacitances.

o

K(S)V|(’)

s o T 0

a) Show that before compensation, with C = 0, the system can be described by the
block diagram below to the left.

tf—o1

volt) vo(t)  vplt) volt)
° K(s) o = K(s) 2 -
+ . + N7
R, Ry o I+R,Cs
R +R, | R +R; [+RCs

R=PRRy / (R +Ry)

b) Show that with compensation the system can be described by the block diagram
above to the right.

¢) Let K(s) = 60/(s+ 1)%, RiC =1 sec, Ry = 9R;. Show that the loop gains,
compensated and uncompensated, are given by precisely the formulas assumed in
Example 6.A-3 (K (s) as given here is not, of course, a very good representation
of actual op-amp behavior).

d) Show that the overall system functions for the feedback amplifier using the values

in (c) are
50 (uncompensated)
Va(s) H(s) (s +2.82)(s? +0.18s + 2.49)
= 8) =
60 1
Volo) (s +10) (compensated).

(s+ 1)(s + 10.65)(s2 + 1.355 + 6.62)

e) Discuss the character of the unit step response (final values, rise times, overshoot,
etc.) for each case in (d). (Feel free to actually find the step responses if you wish!)
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Problem 6.7

I0+i(f)

] D) o 1
Yot+y(t)

wat

apn oo
A" an - an - -4

Systems to suspend a weight in a magnetic field are often inherently unstable because
the magnetic force on an armature grows rapidly as the gap is reduced. For the system
shown above, let Yo be the position at which the magnetic force due to the current Ip
just balances the gravitational force due to the weight. For small changes from this
(unstable) equilibrium, assume that the incremental current and position satisfy the
differential equation

d*y(t)

dt?

To stabilize this system, suppose we measure movement from the equilibrium point
with a pickup coil whose output voltage is proportional to velocity,

— dy(t) = —10i(t).

v(t) = 251—%2,

We then propose to compare this signal with a desired velocity signal z(t) and drive
the coil with the amplified difference as shown below.

Comparator
x(1) +p

y{t)

Suspension

Pick-up
Coil

a) Show that this system is unstable for any value of K.

b) The circuit on the next page is suggested as a compensator for the system, to
be inserted in the feedback path between the pickup coil and the comparator.
Determine the transfer function V.(s)/V(s) of the circuit, using assumptions ap-

propriate for an ideal op-amp. .
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1
i)

A | |
dea —2

(1)
t)v(f)

¢) Compute the system function for the suspension system with the compensator in
the feedback loop.

d) Find the range of values of K for which the compensated system is stable.

o+

Problem 6.8

Stonewell International has hired you as a consultant to study schemes for regulating
the altitude y(t) of their Space Buggy by controlling the vertical thrust z(t) (which can

be either positive or negative). Assume that z(t) and y(t) can be related by the LTI
model shown below to the left; m is the mass of the craft.

?y(r)
“Wi——~>
X(s) | Y (s)

Yo

—

T
a) Sketch the thrust waveform that would be necessary to change the craft altitude

smoothly but rapidly from one value to another (as shown above to the right) by
direct control of vertical thrust.

b) One proposed control scheme involves adding a feedback loop and controller signal
u(t) as shown below. The mass m of the spacecraft changes as the fuel is used.
Describe the locus of the closed-loop poles of this system assuming that 8 and K
are positive constants and m varies from 0 to oco.

Copyrighted Material



Problems for Chapter 6 201

v(is) + X(s) | Y (s)
S me? —>—
- ms

B |«

c) Is the system BIBO stable under these conditions?

d) To improve performance, derivative feedback is added; the [(-block is replaced
by the dashed block shown below, where d/dt indicates an ideal differentiator.
Describe the stability of this improved system as a function of the constant
K,—0 < K < o0.

A
! 1
| ]
| + | S
1
| + ; -4
| d Yy
i ar [* '.
| )
L o e e 4

e) Using the improved design with very large K > 0, determine the controller signal
v(t) necessary to produce the altitude change described in (a). Do you think the
“improved” design would in fact be easier or harder to control manually than direct
control of the vertical thrust?

Problem 6.9

As suggested in Example 6.2-1, the frequency response effects of op-amps can be
approximately described by an equivalent circuit consisting of a controlled source
whose gain is a function of frequency, K(s) . For two popular op-amps, K(s) is given
approximately by

5
( 10 - (Type 741)
s s
S — 41
(20% + l)(2 X 1067 + )
K(s) =
10°
; (Type 748).
s s
) ——+1
L(2007r * )(2 <1067 )
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a) Sketch the Bode plot for each of these op-amps. Which would you say was the
better op-amp? What criterion are you using for “better”?

b) Discuss the stability of each of these op-amps if used in the voltage-follower circuit
shown below to the left.

e *d
- +
© |
=V (s) Vals)
L o °

c) Discuss the stability of each of these op-amps if used in the non-inverting amplifier
circuit with low-frequency gain = 10 shown above to the right.

d) Now which op-amp do you think is better? What criterion are you now using for
“better”? Why is the voltage-follower circuit a more severe test of stability than
the non-inverting amplifier circuit?

The 741 and 748 are identical devices except that one of the time constants of the 741
is intentionally made larger; that is, the 741 is internally compensated to avoid the
difficulty explored in this problem.

Problem 6.10

The simple linear feedback system shown below is intended to perform as a tracking
system. Ideally the error signal, €(t), should be identically zero, or equivalently y(t)
should be equal to z(t).

x(t) + e(t) y(rL

H{s)

a) Suppose H(s) = 1/s. Determine the steady-state form of ¢(t) if the input is a unit

ramp function
t, t>0
z(t) =
0, t<O.

Will the tracking error be zero in the steady state?

b) Repeat (a) for H(s) = 1/s*. Describe the nature of the tracking error in the steady
state.

¢) Suppose H(s) = A(s)/s®. Choose A(s) so that the problems uncovered in (a) and
(b) are resolved and €(t) — 0 for a unit ramp input. Sketch (t), z(t), and y(t) for
your choice on the same coordinates.
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Problem 6.11

It can be shown that any two-terminal admittance, Y (s), composed of positive R’s, L’s,
and C’s must satisfy two conditions:

1. The poles of Y(s) cannot lie in the right half-s-plane.
2. Re[Y(s)] > 0 for all Re[s] > 0.

(For a discussion of these conditions, see Problem 4.5.)

a) Show that the following circuit is stable for any Y (s) satisfying these conditions if
gm > 0.

Y(s) —0
G' + +
G, and G, are
volt) AL valt) conductances
gy (t) Gz
°

b) What is the smallest magnitude of g, for which there might be instability for
some Y(s) satisfying these conditions if g, is negative?

Problem 6.12

In the circuit shown below, the large box represents a two-stage amplifier idealized to
have infinite input impedance and a current-source output as shown. The smaller boxes
are one-port circuits characterized by their impedances, Z(s) and 2Z(s).

a) With the switch open and a voltage source vz(t) applied, compute the loop gain,
Vi(s)/Va(s), and show that it equals g, Z(s)/4.

b) For Z(jw) as shown in the figure, plot the Nyquist diagram (or polar plot of the
loop gain).

¢} If Z(jw) is as shown, what is the maximum (positive) value that g.. can have if
the circuit is to be stable when the switch is closed?

22Z(s)

+ B -
Z(s)| v (1) va(1) Z(s)
0 _ _ gmva(t) 9
L o |
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Problem 6.13

The measured sinusoidal steady-state frequency response, K (727 f), of a certain band-
pass amplifier is shown in the polar plot on the page opposite. This amplifier is cascaded
with an ideal amplifier with gain x > 0, and a fraction 3 of the output is fed back as
shown in the insert on the opposite page.

a) What is the largest value of uf for which the overall system will be stable?

b) Let 183 equal half the maximum value found in (a). Find x and (3 such that the
overall gain at f =1 is 50. What are the gain and phase margin under these
conditions?

¢) To improve the performance, a lag network is inserted at the position of the dotted
box with frequency response

1

G2 = G 577i08

Draw directly on a copy of the polar diagram a sketch of G(j2n f)K(52rf)—
approximately to scale. The simplest procedure is to compute the magnitude and
angle of G(j2r f) for f =1, 10/+/3, 10, 10v/3, etc. Pay particular attention to the
asymptotic behavior as f — 0 and f — oo.

d) Determine approximately the largest value of u 3 for which the new system will be
stable.

e) Repeat part (b) for this compensated system, letting u3 be the same value as
before (half the value found in (a) ).

Problem 6.14

The system shown below is usually called a phase-shift oscillator. The transistor current
amplifier A has negligibly small input impedance, high output impedance, and a current
amplification i, /7, = —A, where A is a positive constant. In practice, C1 < C2 < C3
and Ry > R; > Rz, but for purposes of this problem let C; = C2 = C3 = C and
Ri=Ry;=R;=R.

a) Plot the Nyquist diagram of the loop transmission.

b) Find the critical value of A for which the circuit just oscillates.

¢)

Calculate the frequency of oscillation.

C Co Cs
’_{ (_ Ai (1)
R, R, Rs i\
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Problem 6.15

If there were no acoustic feedback from the loudspeaker to the microphone, an out-
door public address system would have the overall frequency response G(jw) shown
below, where G(jw) is the ratio of the sound pressure at the loudspeaker to the sound
pressure at the microphone. But for a fixed angle of orientation between speaker and
microphone, it is found that the microphone picks up a fraction 1/r? (where r is the
distance between speaker and microphone in feet) of the sound from the loudspeaker
delayed by the time it takes sound to travel r feet (assume the speed of sound to be
1000 ft/sec). It is also found that the system is not stable for r; < r < r;. Use Nyquist’s
criterion to calculate r; and ra.

Gljw)
<G(jw)=0
225
> w
| 27102 2r10*
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