
8.0 Introduction 

8 
THE UNILATERAL Z-TRANSFORM 
AND ITS APPLICATIONS 

L-transforms and system functions provided the most convenient method for 
finding the zero state response of continuous-time systems. A similar technique is 
applicable to discrete-time systems. The discrete-time exponential function, zn, 
plays the role of the kernel, est, and the Z-transform replaces the L-transform. 
Our development of these topics will be both brief and restricted in scope, but 
it will provide an orderly method for solving linear time-invariant difference 
equations, as well as introducing such useful notions as the discrete-time system 

function and the characterization of discrete-time systems in terms of pole-zero 
locations in the complex z-plane. 

8.1 The Z-Transfonn 
The (unilateral) Z-transform of a sequence x lnJ is defined by the formula 

00 
X(z) = E x [nJz-n . (8.1-1) 

If Ix[nll grows no faster than ex
ponentially, this series will con
verge for all z outside some circle in 
the complex z-plane whose radius 
TO is called the radius of conver
gence (see Figure 8.1-1). As in the 
case of the L-transform, the use
fulness of the Z-transform depends 
on the fact that the relationship be
tween X(z) and the sequence x[nJ is 
biunique-to each x [nJ defined for 
n � 0 there corresponds one and 
only one X(z) defined for Izi > TO, 
and vice versa. For Z-transforms, 

n=O 

Figure 8.1-1. Typical domain of 
convergence. 
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232 The Unilateral Z-Transform and Its Applications 

this uniqueness theorem is basically a reinterpretation of the central theorem 
concerning the uniqueness and convergence of power-series expansions of analytic 
functions of a complex variable. * 

Example 8.1-1 

x en] 

A 
Drawn for 

0: 0.8 

234567 

z - plane 

Drawn for 
0="'2 

Figure 8.1-2. A DT exponential function and its domain of convergence. 

Suppose that x[n] is a DT exponential function 

as shown in Figure 8.1-2. Then 

which converges to 

00 

X(z) = A L anz-n 
n=O 

- A X(z) = 1 
_ az-1 

(8.1-2) 

(8.1-3) 

if laz-11 < 1 or Izi > lal. These formulas remain valid if a is complex. We note that 
X(z) has a zero at z = 0 and a pole at z = a on the circle bounding the region of 
convergence. 

One important special case results if a = 1 so that x[n] = A = constant , n :2: o. 
The pole of X(z) is now located at z = 1. This situation is illustrated in Figure 8.1-3. 

x [ ] n 
A 

234 567 

- -

n 

Figure 8.1-3. Z-transform of x[n] = A, n :2: o. 

z - plone 

*See, e.g., E. 8. Saft' and A. D. Snider, Fundamentals of Complex Analysis for Mathematics, 
Science, and Engineering (New York, NY: Prentice-Hall, 1976). 
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8.1 The Z-Transform 233 

Another interesting situation arises if a is negative, since then the signs of succes

sive values of x[n) alternate. In this case the pole is on the negative real axis. This 
situation is illustrated in Figure 8.1-4. 

x[nJ = A(-O.8)n, n�O z:" plane 

-.8A --

Drown for 
Q = -.8 

Figure 8.1-4. Z-transform of x[n) = A( -0 .8)"', n � o. 

Example 8.1-2 
Consider, for Izl > 1/2, 

- 30z2 5 
X(z) = 6z2 _ Z - 1 = 1 1 1- _Z-l __ Z-2 

6 6 

By the uniqueness theorem this should correspond to a unique x[n), n � o. How can 

we carry out the inverse Z-transformation? One way to find x[n), n � 0, is to expand 

X(z) in a power series in Z-l. This can be accomplished, for example, by long division: 

5 5 -1 35_2 +-z + -z + ... 
6 36 

5 - 1 -z + 6 
5 -1 6Z -

35 -2 + -z 36 
35 -2 
- z 
36 
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234 The Unilateral Z-Transform and Its Applications 

(Note that both the numerator and the denominator of X(z) are written as series of 
descending powers of z.) Thus for sufficiently large \z\ (in fact, for \zJ > 0.5) we can write 

X- ( ) 5 5 -1 35 _2 Z = +-z +-z + ... 6 36 

Since in general X(z) = L x(n]z-n, we con-

clude that 

x[O] = 5, 

5 
x[l] = 6' 

35 
x[2] = 36' 

etc. 

Z - plone 

Although some variant of this procedure will 
always work to recover to x[n] from X(z), it is 
obviously clumsy. A more powerful technique 
parallels the partial-fraction method for L
transforms . Thus we may write Figure 8.1-5. Pole-zero plot. 

- 30z2 5 X(z) = 6z2 _ Z - 1 = 

1 1 1 - _Z-l __ Z-2 6 6 
5 

3 2 --- + ---
1 1 -1 1 1 _1 - -z +-z 

2 3 
where the coefficients of each fraction are obtained as before, that is, 

=3; 
z-1=2 

=2. 

Then, since the Z-transform is a linear operation , we conclude from uniqueness and 
Example 8.1-1 that 

x[n] = 3( �r + 2( -�r, n � 0 . 
This formula checks our preceding results for n = 0, 1, and 2 but is clearly much 
more effective than the power-series method if we are interested in values of x[n] for 
n much greater than 2. Notice the special way in which X(z) is written in terms of 
negative powers of z with the constant term in the denominator equal to 1. Note also 
the particular form of the partial-fraction expansion, which is chosen so that terms of 
the form 1/(1 - az-1) can be recognized as corresponding to the sequence an, n � O. 

��� 
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8.1 The Z-Transform 235 
Example 8.1-3 
The partial-fraction �xpansion procedure of the preceding example apparently fails 
if the numerator of X(z) is of equal or higher degree in z-l than the denominator. 
Consider, for example, 

1 1 - Z-1 _Z-2 X1(z)= -----
1 -1 1 _2 1--z --z 6 6 

If we attempt as above to write (incorrectly, as we shall see) 

with 

X1{z) = 
k1 + k2 

1 __ 
1 

Z-1 1 1_1 
2 

+3z 

==3 

= 2  

we obtain the same coefficients as in Example 8.1-2, which corresponds to the 

partial-fraction expansion of 
5 

rather than the expression we sought 
1 -1 1 _2 1- -z --z 

to describe. * 
6 6 

One clue to the difficulty is that each of the terms in the attempted expansion 
vanishes as z-1 -> 00, whereas the given X1(Z) -+ 6 as Z-1 ...... 00. Indeed, 

_ 11- Z-1 - Z-2 5 X1(z) = = +6 
1 -1 1 -2 1 -1 1_2 1--z --z 1--z -- z 
6 6 6 6 

80 we could write (correctly) 

Xl(Z) = 3 + 2 +6. 
1 1 -1 1 1_1 - -z +-z 2 3 

In general, we can obtain an expansion of this kind by first dividing the denominator 
into the numerator, reducing the degree in Z-1 of the remainder until it is less than 
the degree of the denominator. Thus if we seek an expansion of 

X ( ) = 1 + Z-1 + Z-2 
2 Z 1- z-t 

*This same difficulty arises, of course, if we attempt to use partial fractions to take the 
inverse transform of an improper L-transform. The correct partial-fraction expansion is readily 
obtained in that case as described here. The interpretation of the results , however, requires 
special techniques, as we shall explain in Chapter 11. 
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236 The Unilateral Z-Transform and Its Applications 

we divide 

to obtain the expansion 

- Z-I + 1) Z-2 + Z-I + 1 
Z-2 _ Z-I 

2 Z-I + I 
2 Z-I - 2 

3 

- 1 3 X2(z) = -Z- - 2 + ---I . 
l-z-

The general result is thus a polynomial in Z-I plus a proper fraction in Z-I that can 
be expanded in partial fractions in the ordinary way. 

_________ -' f+-B--.:_n] ___.._>-----+-. -. • ...-... n L,. . . 
-3 -2 -I 2 3 4 5 -2 -I r 2 1-1 

Drown for [ 
. 

1�: 
n 

J 1+1 
Figure 8.1-6. Unit sample function. Figure 8.1-7. Delayed sample function. 

It should be evident from the basic definition of the Z-transform (8.1-1) that the 
inverse transform of ktz-l is a DT function f[n] that is zero for all n except n = l, at 
which point f[l] = kt. It is more convenient, however, to introduce a special function, 
the unit sample function 8[n], defined* by 

8[n] = 

{I, 
0, 

n=O 

n#O. 

The Z-transform of o[n] is obviously 

8[n]=1. 

The delayed unit sample function,t 8[n -l], is defined by 

and has the Z-transform 

{I, n = l 8[n-l]= 
0, n#l 

(8.1-4) 

(8.1-5) 

(8.1-6) 

(8.1-7) 

We can write the inverse transforms of X1(z) and X2(z) m terms of unit sample 
functions since 

- 11 - Z-I -Z-2 
X1(z)= -----

1 -I 1 _2 l--z --z 
6 6 

'Note that SIn] is defined for all n, -00 < n < 00, not just for n 2: o. 
t The delayed unit sample function is often called Kronecker's delta and indicated by the 
notation 6nt. 
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8.1 The Z-Transform 237 

so that for n � 0, 

and since 

so that for n � 0, 

- 1 + z-l + Z-2 -1 3 
X2(z) = =-z -2+ --

1 - Z-l 1- Z-l 

X2(n] = -8(n - 1]-28(n] + 3 {I, n = ° 
= 2 n= 1 

3: n> 1 .  

As with L-transforms, most applications of Z-transforms involve manipula
tion of a few basic transform pairs using a small number of properties and 
theorems. Some important theorems are: 

SUPERPOSITION (LINEARITY): 

ax[nJ + by[nJ <==> aX(z} + bY(z}. 

MULTIPLICATION BY AN EXPONENTIAL: 

anx[nJ <==> X(a-1 z} . 
MULTIPLICATION BY n: 

DELAY BY N Z 0: 

dX(z} 
nx[nJ <==> -z�- . dz 

x[n - NJu[n - N] <==> z-N X(z}. 
In the Delay Theorem, urn] is the discrete-time unit step function 

(8.1-8) 

(8.1-9) 

(8.1-10) 

(8.1-11) 

u[n] = 

{I, 
0, 

nzO 
n<O. 

(8.1-12) 

f u[nJ 

• • 
1 I I I I I I -� n 

-2 -I 1 2 3 4 5 6 

Figure 8.1-8. Unit step function. 

For each theorem the proof follows almost immediately from the basic definition 
{8.1-1}. A table of simple Z-transforms and basic Z-transform theorems is given 
in the appendix to this chapter. 
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238 The Unilateral Z-Transform and Its Applications 

Example 8.1-4 

From Example 8.1-1 and the Multiplication
by-n Theorem, the Z-transform of 

x[n] = nan , n�O 

1S 

X(z) - -z.:!:...( 1 ) - dz 1-az-1 
az-1 

Example 8.1-5 

From Example 8.1-1 and the Delay Theorem, 
we have the Z-transform pair 

-N 
n-N [ N] z a u n - <==> "-1-_-a-z--""7"1 

In particular, the transform of the delayed 
unit step function is 

Z-N 
urn -N] <==> -- . 

1-Z-l 

As an application of this result, note that we 
may write the discrete-time pulse function 

pN[n] = 

{1, 
0, 

in the form 

x (n] 
.5 Drawn for 

0= 0.5 

2 3456 7 

Figure 8.1-9. x[n] = nan, n � O. 

It on-Nu[n-NJ 

�,.ll1 
-2 -l i N-I N N+I 
J:ucn-NJ (i. e., 0=1) 

, . III Ln 
-2 - I I '  N-I N N+I 

Figure 8.1-10. an-N urn - N]. 

, II .. '�n 
pN [n] = u[n]- urn - N]. -2 -I I 2 N-I N N+I 

Figure 8.1-11. The function pN[n]. 
We may then apply the Linearity Theorem and the Delay Theorem to obtain 1- Z-N -

pN[n] <==> 1 = PN(Z) 
1-z-

which we recognize as precisely formula (7.3-4) for the partial sum of the geometric 
series, 

which, of course, is also the result obtained if PN(Z) were evaluated directly by (8.1-1). 
�.� 
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8.2 The Z-Transform Applied to LTI Discrete-Time Systems 239 
8.2 The Z·Transform Applied to LTI Discrete-Time Systems 

To apply the Z-transform to the analysis of discrete-time systems, we need 
another theorem which plays much the same role for Z-transforms that the 
Differentiation Theorem does for L-transforms: 

FORWARD-SHIFT THEOREM: 
If X(z) is the (unilateral) Z-transform of x[nJ, 
then z(X(z) - x[O]) is the Z-transform of x[n + 1J. 

The proof is immediate from the basic definition of X(z) and the pictures in 
Figure 8.2-1. The following examples illustrate the broad usefulness of this 
theorem. 

x [n] 

00 
X(z) = L x[n]z-n 

o 

x'(n]" x(n+11 

00 00 

X' (z) = L x'[nJz-n = L x[n + l]z-n 
o 0 

= x[o] + X[ljz-l + X[2jz-2 + ... = x[l] + X[2jz-l + X[3jz-2 + ... 
= z(X(z) - x[o]) 

Figure 8.2-1. lllustration of the Forward-Shift Theorem. 

Example 8.2-1 
The mortgage problem of Example 7 .1� 1 led to the difference equation 

P[n + 1) = (1 + r)P[n) - p, n 2 0 . 

Taking the Z-transforms of both sides , using the Forward-Shift Theorem, yields 
- - p z(P(z) - prO]) = (1 + r)P(z) - 1-

Z
-l . 

Solving for P(z) and expanding in partial fractions yields 

P(z) = 
� + P[O}-plr 
1-z-1 l-(l + r)z-l 

Inverse transforming yields 

P[n] = plr + (P[O) - plr)(l + r)'n, n 2 0 

which is the result derived by induction in Example 7.2-1. 
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240 The Unilateral Z-Transform and Its Applications 

Example 8.2-2 

If X(z) is the Z-transform of x[nJ, then Z2 X(z) - Z2X[O}- zX[I} is the Z-transform 
of x[n + 2}. This is easy to show, either directly or by considering x[n + 2J as the 
forward shift of xln + I} and applying the Forward-Shift Theorem twice to obtain 
z(z[X(z) - x[OJ}- xIIJ). Extensions to still larger forward shifts proceed similarly . 
Such extensions permit Z-transforms to be applied directly to the solution of input,. 
output LTI difference equations of arbitrary order. Thus, suppose we have a system 
described by 1 1 

y[n + 2J - sy[n + I}- sy[n} = 2x[n}. 

We seek the response to x[nJ = 1, n � 0, with initial conditions y[O} = 0, Y[IJ = 1. Taking 
the Z-transforms of both sides, using the Forward-Shift Theorem and its extension, we 
find 

( 2 - 2 ) I( - ) 1 - -z Y(z) - z y[OJ - zY[I} - S zY(z) - zy[OJ - SY(z) = 2X(z). 

Substituting - 1 X(z)= --
1- Z-1 

and inserting the given values for y[O} and y[l} yields 

Inverse transforming gives 

3 3.6 0.6 = ---- --- + ---1 - Z-1 1 -1 1 -1 I--z l+-z 
2 3 

yIn] = 3 - 3.6Gf +0.6( -Dn, n � O .  

It is easy to check directly that this satisfies the difference equation and has the required 
values at n = 0 and n = 1 .  

��� 

Transforming the input-output difference equation directly (as above) may 
lead to some difficulties of interpretation if the equation contains terms propor
tional to x[n + 1], x[n + 2], . .. , corresponding to shifted input sequences, In this 
case, knowledge of y[O], Y[I], .. " y[N -1], together with x[n], n � 0, determines 
a unique response, but the values of y[Oj , y[l], .. " y[N -1] do not define the 
state of the system at n = N -1. (It is necessary to know x[O], x[I], ,." x[N -1] 
as well. ) The situation is precisely analogous to that discussed in Problem 3.3 
for continuous-time systems. 
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8.3 Frequency-Domain Representations of Discrete-Time Systems 241 

8.3 Frequeney-Domain Representations of Diserete-Time Systems 

The description or analysis of CT LTI circuits or block diagrams in preceding 
chapters was much simplified by transforming from the time domain, in which 
elements are described by differential equations, to the frequency domain, in 
which elements are described by impedances or system functions. Structural 
constraints among subsystems (Kirchhoff's Laws, cascade connections, feedback, 
etc.) then lead to algebraic equations that can readily be solved to give system
function descriptions of the overall input-output ZSR behavior. And various 
attributes of system functions-particularly pole- zero locations-permit one to 
say a great deal about the general characteristics of system behavior even without 
explicitly solving for the response. 

System functions and frequency-domain methods have similar advantages 
for discrete-time systems , as we can illustrate by developing a frequency-domain 
form of the delay-adder-gain diagrams of Section 7.2. To begin, recall that the 
unit delay element was defined in Section 7.2 by the difference equation 

y[n + 1] = x[nj . (8.3-1) 

Z-transforming, using the Forward-Shift Theorem, leads to an equivalent de
scription: 

or 
z( Y(z) - y[OI) = X(z) 

- X(z) Y(z) = � +y[Oj. 
z 

(8.3-2) 

We may thus replace the delay block in block diagrams by the transform repre
sentation shown in Figure 8.3-1. Adder and gain elements transform into the 
frequency domain without alteration . 

x[nJ 

xl[n) 

x2[n1 

x[n] 

Figure 8.3-1. 

y [n] = 

x[n-I] 

y[n]: 
xl[n]-x2[n] 

y[nJ = [3> ",[nj .. K .. 

¢:::::::=> � 
XI(Z) 

¢;::::::> X2(Z) 

� X(Z) 

F[O] 
z-I �y(Z) 

.. 

y(z) = 

XI(Z)- X2(zl 

-[3> 
y(z)= 

Kx(zl 
.. 

Frequency-domain representations of delay, adder, and gain elements. 
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242 The Unilateral Z-Transform and Its Applications 

Replacing each block as above, any delay-adder-gain block diagram becomes 
a frequency-domain representation of the DT system having precisely the same 
properties as frequency-domain representations of CT systems. Some of the 
principal consequences are illustrated in the following example. 

Example 8.3-1 

x[nJ + 

Figure 8.3-2. 1st-order system for Example 8.3-1. 

y[nJ 

The block diagram of Figure 8.3-2 is the form taken by the general canonical block 
diagram of Figure 7.2-7 in the 1st-order case. It is equivalent to the difference equation 

yIn + 1J + aoylnJ = bixIn + 1J + box(nJ. 

Replacing the blocks and variables by their frequency-domain equivalents yields the 
block diagram of Figure 8.3-3. 

x{z) y{z) 
--.... +�+ -

Figure 8.3-3. Frequency-domain equivalent of Figure 8.3-2. 

Using superposition and Black's formula for the feedback loop, we obtain, almost by 
inspection, 

and 

A(z) = Z-l X(z) + A[O] 
1 + aoz-l 1 + aoz-1 

Y(z) = boA(z) + bl (X(z) - aoA(z)) . 
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8.3 Frequency-Domain Representations of Discrete-Time Systems 243 

Eliminating A(z) yields the input-output relation 

which can, of course, be checked by applying the Forward-Shift Theorem directly to 
the difference equation, using the fact (derivable from Figure 8.3-2) that 

To obtain_ a complete solution for y[nJ, we need only substitute an appropriate expres
sion for X(z) and inverse transform. This is most conveniently done for a numerical 
example. Thus suppose 

and 

Then 

and 

so that 

ao = 0.5, bo = 2, b1 = 2, >-'[0) = 1 

x[n1=Gf, n�O. 

Y(z) = 
2(1 + z-l) + 1 (1+�Z-1)(1_�Z-1) 1+�Z-1 

-0.2 3.2 

It should be reasonably obvious from this example that the following com
ments apply to DT linear time-invariant systems in general. In each case the 
close parallel between DT LTI system behavior and CT LTI system behavior 
should be carefully noted. 

1. The total response time can be considered as the s�m of the zero state 

response (ZSR}-the first term in the equation for Y(z) in the example 
above-and the zero input response (ZIR)-the remaining term. The ZSR 
depends only on the input xlnJ, n � 0; the ZIR depends only on the initial 
state, for example, the outputs of the delay elements at n = o. 
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244 The Unilateral Z-Transform and Its Applications 

2. If there is more than one input, the ZSR is a superposition of terms describ
ing the separate effects of each input. Each such term is a product of the 
Z�transform of that input and a system function Hi(Z) relating the ith in� 
put to the output. Thus, in Example 8.3-1 the system function relating the 
output to the external input x[n] is 

The inverse transform of the product H(z)X(z) is the ZSR response to the 
input x[n]. 

3. The system function and the inpu�output difference equation imply one 
another through the replacement 

z � forward shift. 

In general the finit�order DT LTI system described by the difference equa� 
tion N N 

L aky[n + k] = L bixIn + l] 
k""O £",,0 

is also described by the system function 

(8.3-3) 

(8.3-4) 

Since H(z) is a rational function of z, it is characterized (except for a 
multiplicative constant) by the locations of its poles and zeros. 

4. The poles of H(z) are also the roots of the characteristic equation describing 
the solutions of the homogeneous difference equation 

(8.3-5) 

If the N roots of this equation, that is, the N poles of H(z), are labelled Zb 
Z2, • . .  , ZN, then the ZIR has the form (assuming no multipl�order roots) 

N 
yIn] = L Akzk (ZIR) 

k""l 
(8.3-6) 

where the values of the N constants Ak depend on the initial state. If IZkl < 
1 for all poles, then the ZIR dies away and the system described by H(z) is 
stable (in the inpu�output sense) . 
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8.3 Frequency-Domain Representations of Discrete-Time Systems 245 

5. The domain of convergence of H(z) is the region outside the smallest circle 
enclosing all the poles of H(z). The system is stable if the domain of 
convergence includes the unit circle, Izl = 1. 

6. DT LTI systems can be combined in cascade, in parallel, in feedback ar
rangements, etc., just as CT LTI systems can be. The rules for determin
ing the combined system functions are the same for systems described by 
Z-transforms as for systems described by [-transforms. For example, the 
system function of the cascade connection of two DT systems is the product 
of their individual system functions and is independent of the order of the 
cascade as shown in Figure 8.3-4. And Black's feedback formula applies to 
the arrangement shown in Figure 8.3-5. 

X(Z) 
.\ ·1 

Y(z) 
RI(z) R2(z) • 

III 
X(Z) Y(z) 

.\ R2(z) .\ H, (z) � 

H(z) = �(z) (ZSR) = HI (z)H2(z) = H2(z)H1(z) X(z) 

Figure 8.3-4. Cascade connection of DT systems. 

X(Z) + 

Figure 8.3-5. Feedback connection of DT systems. 

Example 8.3-2 

To illustrate further some of these features of the frequency-domain description of 
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DT system behavior, consider once again the numerical integration of the equations 
describing the circuit of Examples 1.3-3 and 7.1-2, redrawn in Figure 8.3-6. 

Figure 8.3-6. Circuit of Example 1.3-3. 

In Example 7.2-1 we derived block diagrams both for the CT state equations of 
this circuit and for a set of DT state equations that were approximately equivalent. 
The diagrams differed only in that each integrator in the CT diagram was replaced 
by the cascade of a gain element, �t, and an accumulator in the DT version. In the 
frequency domain, the corresponding representations are shown in Figure 8.3-7; the 
representation of the accumulator follows directly from the Forward-Shift Theorem 
applied to the defining difference equation. Hence the frequency-domain diagrams for 
the DT and CT state equations are identical under ZSR conditions, except for the 
replacement of l/s by �t/(z - 1) in each integrator-accumulator block. Thus, any 
system function relating two transforms in the DT diagram will be identical with the 
corresponding system function in the CT diagram provided that s is replaced by (z-
1)/ �t wherever it appears. In particular we readily conclude from impedance methods 

x[nJ 

Time Domain 

x( t) 

x(t) = 
dy(t) 

dt 

x[n)�t = y[n + 1)- y[n) 

X(s) 

Frequency Domain 

y(O)/s 
Y(s) 

1 
Y(s) = - (Xis) + y(O)) 

s 

z-I y(z) 

Y(z) = 
X(z)�t + y[O)z 

z-l 

Figure 8.3-7. Integrators and accumulators in the time and frequency domains. 
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applied to the circuit diagram above that the input-output CT system function is 

1 (R2 +L2S}C ------''':it::- + Rl + Ll S 
R2 +�s+ Cs 

0.5 

,)("--':-
, I " I I I 

-104:' : 
\ 

\ 

, , I 
�.::---

jill 

v'3XI04 2 
-.5XI04 

(8.3-7) 

where we have substituted the element values 
given in Example 7.1-2. The pole locations 
are thus as shown in Figure 8.3-8. Obviously, 
the CT circuit is stable; its slowest normal 
modes have a decay time constant of 2X10-4 
sec. Following the scheme suggested above, 
we need only replace s wherever it appears 
in (8.3-7) by (z -l}/t::..t to obtain the input
output DT system function Figure 8.3-8. Pole locations for H(s). 

H(z} = �2(Z} (ZSR) = H(Z -:t
1 ) 

Va(z) .... 

0.5 ( Z - 1 )( ( Z - 1 )2 (Z - 1 ) ) 104t::..t + 1 104t::..t + 104t::..t + 1 
The poles of H( s) are located at 

s = -10\ 

Consequently the poles of H(z} are located at 

z;./ =_104, -0.5X104±j� X104 

or 

z=1-104t::..t, 1-0.5X104t::..t±j�X104t::..t. 

The pole locations thus depend on t::..t, as shown in Figure 8.3-9. 
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6/=IO-4sec 
unit circle 61 = 0.5x 10-4 sec 

z - plone 

Figure 8.3-9. Pole locations for H(z). 

We saw in Example 7.3-2 that the DT system accurately describes the behavior of 
the CT system for /).t « 10-4 sec . For very small /).t, the geometrical relationship of 
the poles of H(z) to the point z = 1 and the circle JzJ = 1 is similar to the relationship 
of the poles of H(s) to the point s = 0 and the line s = J·w. Such a similarity is in fact 
necessary and sufficient for the step responses of the DT and CT systems to be similar, 
as is discussed more fully in Problem 8.9. For larger /).t, the similarity deteriorates, 
and for /).t > 10-4 sec the poles of H(z) have magnitude greater than 1 so that the DT 
"approximation" actually becomes unstable. (The step response of the DT system with 
/).t = 1.11 x 10-4 sec is shown in Figure 8.3-lO. Compare this with the step response 
for small /).t derived in Example 7.3-2.) As stated in Example 7.1-2, this numerical 
instability is a result of the choice of the simple forward Euler algorithm to characterize 
the discrete approximation to the integrator ; the effect of other choices is discussed in 
Problem 8.7. 

8 
6 
4 
2 

-2 
-4 
-6 
-8 

10-3 6t=-9 
+ 
, 

, 

, , 

+ : 
\.; 

+ , , 
, , 
, 
, 

50 
+ 

Figure 8.3-10. Step response of H(z) for /).t = 1.11 X 10-4 sec. 
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8.4 Summary 

The unilateral Z-transform 

00 

X(z) = I: x[nJz-n 
n=O 

plays the same role for DT systems that the unilateral L-transform plays for CT 
systems: 

a) Because the relationship between X(z) and x[n], n � 0, is biunique, power
series or partial-fraction expansions may be used to rewrite X(z) in a form 
from which x[nJ is evident. 

b) A variety of theorems simplify the manipulation and derivation of transforms 
and their inverses. 

c) The Forward-Shift Theorem reduces the analysis of DT systems charac
terized by difference equations or block diagrams to an algebraic process. 

d) The total response of LTI DT systems can be considered as the sum of a 
ZSR and a zm. The Z-transform of the ZSR has the form 

Y(z) = H(z)X(z) 
where the system function, H(z), for LTI systems of the type described in 
(c), is a rational function of z characterized by its poles and zeros. The poles 
also determine the form of the zm. The system is input-output stable if the 
poles lie inside the circle I zj = l. 

e) The input-output difference equation and the system function are closely 
related. An accumulator-adder-gain or delay-adder-gain block diagram is 
readily synthesized to correspond to any set of LTI difference equations or 
system functions. 

The DT systems analyzed in the last two chapters are linear and time-invariant, 
but they are not the most general LTI discrete-time systems. The most general 
class requires extension to system functions that are not rational functions of z, 
and to a convolution rather than difference-equation characterization in the time 
domain. Such an extension is our goal in the next chapter. 
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APPENDIX TO CHAPTER 8 

Table vm.l-Short Table of Unilateral Z-Transforms 

'" 
X(z) = L x[n]z-n 

x[n], n > 0 

8[n] = f,n=o 

0, n#O f' n>N>O 
u{n-N] = - -

0, n<N 

an 

n 

nan 

an cos nO 

an sin nO 

n=O 

.::=> 

.::=> 

.::=> 

.::=> 

.::=> 

.::=> 

.::=> 

X(z) 

1 

Z-N 

1- Z-l 
1 

1 - az-1 
Z-l 

(1- Z-1)2 

az-1 

(1 - az-1)2 

1- a cosOz-1 
1 - 2a cosl/z-1 + a2z-2 

a sinOz-1 
1- 2a cosOz-1 + a2 Z-2 

Note: x{n] is defined by X(z) for n � 0 only. 

Table vm.2-Important Unilateral Z-Transform Theorems 

Linearity ax[n] + by[n] .::=> aX(z) + bY(z) 

Forward Shift x[n+ 1] .::=> z(X(z) - x [0]) 

Delay x[n - N]u[n - N] .::=> Z-N X(z), N � 0 

Multiplication by an anx[n] .::=> X(a-1z) 

Multiplication by n nx[n] .::=> ( dX(Z)) -z az 
Convolution* n 

x[n]u[n] * h[n]u[n] = L x[m]h[n - m] .::=> X(z)H(z) 
m=O 

*See Chapter 9. 
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EXERCISES FOR CHAPTER 8 

Derive the following Z-transform pairs, X(z) = 2..::=0 x[nJz-n: 

x[n], n? a X(z) 

a) c,n=1 
2z-1 26[n-1}= � 

0, otherwise 

b) 1+Gf � 
z(4z-3) 

2Z2 -3z+ 1 
c) cr mr 4 -Z-l "2 cos3 � 

4-2z-1 +Z-2 

d) n2 � 
z(z + 1) 
(z -1)3 

Exercise 8.2 

Complete the following table of unilateral Z-transforms by finding formulas for x[n], 
n? 0, or X(z) = 2..::=0 x[nJz-n as required. For each of the pairs, sketch both x[n], 
n ? 0, and the pole-zero plot corresponding to X(z). 

Answers: 

x [nJ , n? 0 

a) 2, all n � 

b) � 

c) cosh2n � 

d) (n + 1)3-n � 

e) ? � 

f) f ,nS2 
x [n] = (1/2r-2, n > 2 

� 

(a)� 
z-1 (b) 0, 6, -1, 0, 0, ... 

Z2 (d) (z _ (1/3»2 
{O. n = 0, n odd 

(e) (1/2t, otherwise 
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X(z) 
? 

6 -1 -2 Z -z 

? 

1 
4Z2 -1 

? 

) 1-(cosh2)z-1 
(c 

1- 2(cosh2)z i + z 

(f) Z2 + (1/2)z + (1/2) 
z(z - (1/2)) 

2 
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PROBLEMS FOR CHAPTER 8 

Problem 8.1 
The delay-adder-gain synthesis schemes for discrete-time systems discussed in Section 
7.2 are only a few of many ways to realize equivalent structures. Several other ap
proaches are explored in this problem. 

a) Determine a delay-adder-gain block diagram of the canonic type described in 
Section 7.2 for realizing the system function 

_ 3-3z-l 
H(z) = . 1 + O.Srl - O.Sr2 

b) Develop an equivalent block diagram by first expanding H(z) in partial fractions, 
then realizing each term separately as in Section 7.2, and finally connecting the 
separate parts in parallel (with adders) to realize H(z). 

c) Develop another equivalent block diagram by first writing H(z) as a product of 
factors, that is, - [K ][I-{3Z-l] 

H(z) = 1- ca-l 1 -I'Z-l ' 

then realizing each factor separately as in Section 7.2, and finally connecting the 
separate parts in cascade to realize H(z). 

d) The example above had real poles and hence the gains required were all real. 
Suggest a modification of the procedures in (b) and (c) that will allow a realization 
of H(z) having more than two, possibly complex, poles while still utilizing only 
amplifiers with real gains. 

Problem 8.2 

Each female in a certain rare species of insect lays eggs twice in her lifetime, one week 
apart, and then immediately dies. Careful experimental studies have uncovered the 
curious facts that all the females of this species lay their eggs on the same day of the 
week, Monday, and that each female lays precisely 80 eggs the first time and 500 eggs 
the second time. It has also been shown that 50% of the eggs hatch in a day or so (the 
remainder are eaten by turtles) , and that half of these are females who reach maturity 
in time to lay eggs for the first time on Monday of the following week. 

a) How many weeks does it take the population of mature female insects (ignore the 
males, who don't bite anyway) to increase by a factor of more than 106? (To be 
specific, make the count on Monday mornings.) 

b) Suppose an insecticide (nonresidual, of course) is applied once a week (on Satur
days) and kills a fraction 0 of the insects who have just hatched . It has no effect 
on mature females who have already laid eggs once. How large must 0 be to hold 
the total population stationary? 
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A discrete-time system is described by the difference equation 

y[n + 2] = -y[n + 1J + 2y[n) + x[n + 2) + x[n + 1). 
a) Find the system function H(z) characterizing this system. Show its poles and 

zeros on a sketch of the z-plane. 
b) Find the response of this system to the input 

c) Find the response of this system to the input x[n] = 3n, n ;:::: 0, if y[o) = 0, y[1] = 0. 
Why is this not the same as the ZSR response to this same input found in (b)? 

Problem 8.4 

a) Find and sketch the response of the discrete-time system above to the input 

{1' n=O, 
x[n) = 

0, n #O. 

b) For an input x[n] = (1/2fu[nJ, find the output yin) for n = 0, 1, 2, 3, 4, 5,6. Also 
find yIn] for n = 100,101,102,103. (Answers correct to 1% are acceptable.) 

c) The system above is modified by inserting an amplifier with gain 0.9, as shown 
below. Find and sketch the response to the same input as in (a). 

d) Write a difference equation relating x[nJ and y[n) for the system of part (c). 

e) Find the system function H(z) and the transform of the output Y(z) for the system 
of part (c) with the inpute6jBlhhh��d Material 
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Problem 8.5 

x [n] y[n] 

D 

a) What is the system function H(z) of this discrete-time system? 

b) Find by any means the response to the unit step, x[n] = urn]. 

Problem 8.6 

a) Prove the following theorems for the (unilateral) Z-transform 

IMTIAL- AND FINAL-VALUE THEOREMS: 
i) x[O] = lim X(z). 

ii) x[oo] = lim (z - l)X(z) (if the limit exists). 
z-1 

(lllNT: (i) should give no trouble. (ii) follows by an argument that is essentially 
the discrete analog of the Final-Value Theorem for the L-transformation. Argue 
first that the Z-transform of x{n + 1]- x[n] is 

N 
lim L [x[n + 1]- x[n]]z-n = zX(z) - zx[O]- X(z). 

N-+oO n=O 

Taking the limit as z ..... 1 on both sides and assuming orders of passing to the 
limit on the left may be interchanged, obtain 

N 
lim(z - l)X(z) - x[O] = lim L [x[n + 1]- x[nJ]. 
%-+1 N-+oo n=O 

By writing out a few terms of the sum on the right, convince yourself that the 
limit (if it exists) is x[oo]- x[O], which gives the desired result . ) 

b) Test these theorems by applying them to all of the Z-transform pairs in the table 
in the appendix to this chapter . 
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a) Section 7.1 and Problem 7 . 1  discuss several integration algorithms in addition to 
the forward Euler algorithm. Show that employing one of these other algorithms is 
equivalent to replacing the integrators in a block-diagram representation of the CT 
system with a variant of the DT accumulator whose frequency-domain description 
is one of the following: 

-
X ( Z) 

Bac kward E u l e r A l gor i t h m  

X (z) 
Trapezo id  Ru l e  

S i mpson 's  R u l e  

6, tz 
Z - I  

zS- ( y [O] - 6tx [O] ) 
Y ( z )  

� ( Y  [ 0 ) - �t x [01 ) 

M �  Y( z )  
2 z - I  

b} Show that the difference equations derived in this way using the backward Euler or 
the trapezoid algorithms describe stable DT systems for any ilt and any stable CT 
system . (IllNT: determine the region in the s plane corresponding to the region 
[z [  ::; 1 if s = 1/Hi(Z) where Hi(Z} is the system function of the DT accumulator 
described by the algorithm. This is the region in which s-plane poles must lie if 
the DT approximation is to be stable. To determine these regions, exploit the 
fact that for mappings of this type circles (and straight lines , which are circles of 
infinite radius) map into circles or straight lines; three points determine a circle .} 

c) Show that your results in (b) imply that the trapezoid rule has the important 
property that, for any value of ilt, the DT system is unstable if and only if the 
CT system from which it is derived is unstable. 

d) If Simpson's rule is used in this way , each s
plane pole corresponds to two z-plane poles. 
Find formulas for the z poles in terms of the 
s pole. Show that one of these z poles always 
has Jz J � 1 so that the DT system is always 
unstable, independent of the value of ilt or the 
nature of the CT system. Hence, Simpson's 
rule is not used for this purpose. (IllNT: the 
left- and right-half s-planes map doubly into 
the z-plane regions shown to the right. )  
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Problem 8.8 

A useful technique for the design of DT systems is to choose H(z) so that the response 
y[nJ to a DT step input, x[nJ = urn] , is the same as samples of the response yet) of 
some CT system H(s) to a CT unit step, x(t) = u(t) . That is, we seek 

y In) = y(nT) 

where T is some appropriate sampling interval. In this way, known desirable}eatures 
of the CT system can be extended to the DT system. The relationship of H(z) and 
H(s) in this case is said to be a step-invariant transformation. 

� 
y ( t )  = conti nuou s - t ime s tep  response 

y en] = y ( nT )  = d iscrete - t i m e  step response 
') 

T 2T 3T 4T 5T 6T 7 T  
I , l , I I , I 

0 1 2 3 4 5 6 7  
a) Derive the step-invariant H(z) corresponding to H(s) = _+1 , Q  > O. Describe the s Q 

locations of the poles and zeros of H(z) as functions of Q and T. Compare with a 
pole-zero plot of H(s) . 

b) Draw a block-diagram realization of H(z) using gain-adder-accumulator blocks as 
in Sections 7 .2  and 8.3. Compare with a corresponding realization of H(s) using 
gain-adder-integrator blocks. 

c) Draw a block-diagram realization of H(z) using gain-adder-delay blocks as in 
Sections 7.2  and 8.3. 

d) Repeat (a) for T = 0.02 and a sharply resonant system, H(s) = 2 S . 
S + 2s + 101 

Problem 8.9 
In the sampled-data control system shown in Figure I on the next page, the output yet) 
of a CT system H( s) is sampled, some processing is done on the resulting sequence of 
samples, and the processed sequence r [n) is converted back to a CT signal ret) that is 
subtracted from the control input x(t) to generate the error signal e(t), which becomes 
the input to H(s) .  Usually the discrete-to-continuous converter (D/C) is a zero-order 
hold (see Figure 2 and Problem 7 .4) .  Because of the effect of the clock on the converters , 
the system of Figures 1 and 2 is linear but time-varying. If, however, x(t) has the same 
staircase character as r et) in Figure 2 (or if we are willing to approximate the actual 
smooth x(t) by such a waveform), then it is easy to show that the system of Figure 
1 is equivalent to the LTI DT system of Figure 3 (where xln) and ern) bear the same 
relationships to x(t) and e(t) that r[n] bears to ret)). Let H(z) be the system function 
of the equivalent DT system in the dashed box of Figure 3. 
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x (  t )  + e ( t )  = x ( t ) - r ( t )  
+ H ( s )  

-

r { t ) 

D/C 
C l o c k  

T 

r [n] 

G ( z )  

r en] 

.... 
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y ( t )  

• 
CI D S a m p l  e r 

y [n] = y ( n T )  

Figure 1. 

r ( t )  = r [nJ , nT< t « n + I I T  

+---L.-"----r-.L..----T--r:-. n 
T 2 T  

x en] e [n ] + + 
-

r [n ] 

Figure 2. 

r - - ·  
r - - - - - - - - - - - - - + - - - - - - - - ,  
I I I 
I e ( t )  : y ( t ) I 
I D;. CI 

I � H (s) 
I C D I 
I I 
I Ze ro - S a m p le r I 
I I 
I ord e r  I 
I Ho ld H ( z) I 
I I 
L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  � 

y [n] -
G (z) -
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a) Argue that H(z) is related to H(s) by a step-invariant transformation, that is, if 
y. (t) is the response of H(s) to a CT unit step input, e(t) = u(t) ,  and if y. [n] is the 
response of H(z) to a DT unit step, ern) = u rn] , then y. [n] = y. (nT) , all n. See 
also Problem 8 .8 .  

b) Suppose that H(s) is unstable; specifically, suppose that 

1 H(s) = s _ l '  lRe[s] > l . 
Show that 

which is also unstable since T > O.  
c) Suppose that H(s) is as in (b) and that G(z) = K .  Find the range of values of K 

for which the closed-loop DT system of Figure 3 is stable. 

Problem 8.10 

a) The measured response h[n] to a unit sample input x [n] = 8 [n] of a certain DT 
system is shown in the figure below. Sketch the response y[n] of this system to a 
unit step input x [nJ = urn] . Evaluate the response for n ::; 8. 
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b) A close fit to these observations is provided by the formula 

n � O . 

Find a closed-form expression for the system function H(z) corresponding to this 
formula, 

ao 

n == O  

c) The overshoot in the step response of this system is troublesome in many applica
tions. It is proposed to compensate the given system by cascading it (as shown 
below) with another system described by the difference equation 

wIn) = ay[n] + by[n - I] + cy(n - 2] . 
Find values of the constants a, b, and c such that the overall unit step response of 
the cascade is simply a delayed unit step, urn - I] . 

x [ n] 
h [ n ]  

y [nJ Compensot i n g  w en] 
S ys t e m  

d) Devise a realization of  the compensating system described b y  the difference equa
tion in (c) in terms of delay lines, gain elements, and adders . 

Problem 8.11 
You are engaged in a game of "matching pennies" with your roommate. Each of you 
has a stack of pennies. You compare the pennies on the tops of the stacks. If they are 
both "heads" or both "tails" (i.e. , if they "match" ) ,  you win and place both pennies on 
the bottom of your stack. Otherwise your roommate wins and places both pennies on 
the bottom of his or her stack. You then compare the next pennies in each stack. The 
game is over when either you or your roommate holds all the pennies. 

Suppose at some point you have n pennies . At this point your roommate has 
m = N - n pennies. Assume that N, the total number of pennies, is fixed. We seek 
to determine pIn] , the probability at this point that you will win the game. Evidently 
prO] = 0 (you have lost) and pIN) = 1 (you have won). In general , pIn] must satisfy the 
difference equation 

1 1 p!n + I] = 2P[n + 2) + "2p(n] . 
(Starting from the situation of having n + 1 pennies, one either wins�with probability 
O. S-and thus arrives at a point where one has n + 2 pennies , or loses-with probability 
O.S-and thus arrives at a point where one has n pennies .) Use Z-transform methods 
to solve this equation subject to the given boundary conditions, finding pIn} for any n, 
O :$, n '::; N. 
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