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February 21, 2023

6.3100 Lecture 5 Notes — Spring 2023

Second order DT system, Proportional control, and PD control
Dennis Freeman and Kevin Chen

Outline:
1. Second order DT system: line following example
2. Stability of a second order DT system under a proportional controller

3. Proportional derivative controllers

1. Second order DT system: line following example

Thus far, we studied first order systems in the previous lectures. We are going to use an example
to study second order systems, where new stability properties arise and the proportional
controller becomes insufficient. Let’s consider a line following example illustrated below.

‘ dtn] = dln-1] + aT VsinO[n-1]
0(n) = Oln-1] + o] wln-]
U)[ﬂ] 2 au[n]

Suppose the robot wants to move along a straight line. The robot has a constant velocity V, and
we can control its rotation speed w([n] through an input u[n]:

wln] = yu[n]

In this problem, we have an optical sensor that can measure the distance between the robot and
the line. Our goal is to design a controller that minimizes the distance between the desired

position dg[n] (line) and the measured position dm[n].
The discrete time kinematic equation is given by:
dp[n] = dp[n — 1] + ATV sinf[n — 1]

This is a nonlinear equation, and we need to linearize the term sin 8. We have sin 8 = 6 for small
6. The system equation becomes:

dp[n] = dp[n — 1] + ATVO[n — 1]
We need to write 6[n] in terms of d,[n], where 8[n] is given by:

0[n] = 6[n— 1] + ATw[n — 1] = 0[n — 1] + ATyu[n — 1]

Since we can measure the distance d,,[n], we can setup a proportional controller relative to the

measured distance:
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uln] = K, (dq[n] = dm[n])
Substituting this controller into our system equation, we obtain:
8[n] = 0[n — 1] + ATK,y(dg[n — 1] — d;y[n — 1])
Now let’s write the system equations and simplify:
d,,[n] = d,,[n— 1] + ATVO[n — 1]
dp[n—1] = d[n— 2] + ATVO[n - 2]
Subtracting these two equations, we obtain:
dp[n] —dpn—1] = dp[n = 1] = dyy[n — 2] + ATV (0[n — 1] — 6[n — 2])
Next, we substitute the difference of 6:
dpln] — dpln — 1] = djp[n — 1] — dpy[n — 2] + ATV (ATK,y (da[n — 2] — dp[n — 2]))
We can simplify this equation, collect terms, and get the control system equation:
dmln] = 2dp[n — 1] + (1 + AT?VK,y)dp[n — 2] = AT?VK,ydg[n — 2]

Note that the variable in this equation is d,,,, and we have the indices n, n-1, and n-2. This is a 2"
order DT system with proportional control.

2. Stability of a second order DT system under a proportional controller
We need to go through the same exercise again to analyze the behavior of a 2" order DT system.
The general solution of a 2" order DT system with zero-driving (da[n]=0) is given by:

dm[n] o 611711 + CZA'TZ1

where 1; and A, are natural frequencies, and C; and C, are coefficients determined by the initial
conditions. To analyze system stability, we need to solve for the value of A; and A,. We can
substitute the solution d,,,[n] = A™ into the system equation and then solve for A. Here we are
interested in the homogeneous solution (when the right hand driving function is 0). We have:

At — 2071 4 (14 AT2VK,y)A™2 =0

A2 =221 + (1+AT?VK,y) =0

A=1+j ’ATZVpr

This is an interesting result that we should carefully study. First, A is a complex number, which
contains a real part and an imaginary part. We see that both have a larger than 1 amplitude. For
this line following example under proportional control, the system is unstable regardless of the

We can solve for A and obtain:
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K, values we pick! This is an important result. For higher order systems, a simple proportional
controller usually does not work well. Implementing a proportionally controller can lead to an
unstable system. The sketch below illustrates a sample line-following experiment.
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Another important concept that we want to introduce is called root locus plot. It is a plot in the
complex plane that shows the location of natural frequencies as a function of our controller
parameter. In this example, the only controller parameter we have is Kp. How does a change of
Kp changes the two A values? This plot is shown below, where we start with Kp = 0 and end with
K, = . Note that all A values are outside of the unit circle, which means the system is unstable.
For discrete time problems, the unit circle marks the stability region. For a given parameter value,
if all the associated A values are within the unit circle, then the system is stable. Otherwise, the

system is unstable. f Im ) S
}—\ Al =203 P neveqses oM s i’
: FE EPEETTI
L
Ay

The root locus plot shows proportional control of this second order system is unstable. This
seems to be a major problem. How can we stabilize a higher order system and then optimize the
controller parameters according to some metrics (fastest convergence or smallest steady state
error)? Next, we will introduce the proportional-derivative (PD) controller.

3. Proportional-derivative (PD) controller and 3™ order system

While a proportional (P) controller cannot stabilize the 2" order system, we can implement a
proportional-derivative (PD) controller. The intuition is that our controller should not only care
about how far the car is relative to the setpoint, but also about the rate of change. The PD

controller is given by:

c[n] = K,(da[n] — d[n]) + Kq4 Galn] —AdTa [n—1]  din] —Ac;[n -1

If we substitute this controller into the system equation, we will obtain:
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d[n] —2d[n - 1] +d[n—2]

=AﬂvnQWAn—m—dm—n)+mfdn_n_ddn_”+dh_ﬂ"dm'ﬂ

AT AT

)

We can rearrange this equation and obtain:

d[n] — 2d[n — 1] + d[n — 2](1 + AT?*VyK, + K4VyAT) + d[n — 3](—=K4VyAT)
= dy[n — 2)(AT?yVk, + K4AT Vy) + dg[n — 3|(=K4AT Vy)

This is a 3" order difference equation, and it has the following solution:

Now there are 3 natural frequencies, and they are functions of Kp and Kd. To design a good
controller, we need to choose Kp and Kd such that our system is stable. Since the equation is
sufficiently complex, we will use a numerical tool to generate the root locus plots.

Case 1: set Kd = 0, V=1, y = 1, AT = 0.01, and vary Kp. This becomes a proportional controller
with two natural frequencies. We see that the system is unstable regardless of the Kp value we
choose. g RS

same Ff(-hn(‘

as In r33

\3 "//J 4

Case 2: set Kd =20, V=1, y = 1, AT = 0.01, and vary Kp. We see that now there is an optimal Kp
value that corresponds to the fastest convergence. In the next lecture, we will introduce more

MATLAB tools for analyzing a control system.
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