10/25/23 Control System 区HEI选工 $T_{a} \rightarrow T_{a} \rightarrow T_{a} \rightarrow T_{b} \rightarrow T_{c} \rightarrow T_{c}$ $U_{\alpha} = 0$ $\frac{1467+165}{1+1263+165}$ $Y=$ K(w) H (w) (C (w) Z_1 5.5.5. $\frac{G_{odd}}{1}$ $k(\omega)\mathbb{H}(\omega) >> 1 \implies G(\omega) = 1 \text{ Y-F}_{d}$ Not as Bal K(jw) H(jw) == 1 (S(jw) > 00 $Ze=Q$
 $Y=\sqrt{1+[(g_{w})+[(g_{w})]U_{d,s+1}]}$ * KLIGHLIW >>1 => Gdist(jw) = 6 Bedd KGU) H(W) =-1 (odist(w) ->100 for k (w) H/w) to equal - 1 when I k (w) H/w) = 1 451400 (the ω) = (-180 or the lat

 $(s - 5z)$ $5-522$ $(s - s_2)$ $K(s)H(s)$ $\frac{(s-s_{p_1})}{1}$ $S-S_{1/2}$ $\overline{1}$ $16 - 52$ + Kgw) H(jw) 三千 tero 90° $1 - 5\rho$ $70 - 5p1$ 8 $P_{o}|_{e}$ -90^0 $\mathcal{L}^{\mathcal{D}}$ By QULE three 15 1 zeros & 2 pdes 7 $4K(60HC_1w) \rightarrow -90^\circ$ $|K(y\omega)H(y\omega)| \to 0$

 $1R$ $\frac{1}{2}$ Brick Position $\circ f$ contro Velocity = VE) $=$ force Orcke Mass XEY $=1$ 安白三 Friction $V(t)$ $X=\frac{1}{5}J=\frac{1}{5}sF$ \sum_{α} \equiv $=K_{p}(X_{2}\oplus -X\oplus)$ $(H)=BWH + (H)$ \overline{c} $\frac{1}{1}$ V χ ٣ $55R$ K_{ϕ} 3 $JU(1)-16$ 千万 Windy JEP $\omega_{\rm s}$ $6,00$ α β 90 $\omega_{0\lambda}$ Spel cose Ema
CB2 had case $>$ B^2

 $2R$ If β is very small \Rightarrow K_{ρ} will base to be What if $K(s) = K_p + K_d s$ Angle Plot of 90. $\#\big(\text{K(s)}\text{H(s)}\big)=\# \text{K(s)} + K \text{H(yu)}$ **GOP** -180 * (AGUIKGW) \hat{z} Increasing K2 -90 W 子HGU $|k_{\mathcal{S}}\omega\rangle|$ $|K(\psi)|$ $as \omega \rightarrow \infty$

6.3100: Dynamic System Modeling and Control Design

Gain Margins, Phase Margins, and Lead Compensation

March 20, 2023

Controller Design: Big Picture in Review

Goal: Given a hardware system $H(s)$ (the plant), design a controller $K(s)$ to achieve some set of performance goals.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow K(s) \longrightarrow H(s) \longrightarrow Y = G(s)X
$$

The goals may be specified in the time domain

and/or frequency domain.

Controller Design: Model-Based Approach

Measure \rightarrow Model \rightarrow Optimize \rightarrow Repeat

Design a controller based solely on the frequency response of the plant.

Is it possible to characterize performance using just frequency response?

Design a controller based **solely** on the frequency response of the plant.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow \begin{array}{|c|c|c|c|c|c|c|c|c} \hline \text{ } & & \text{if} & \text{if}
$$

Q: Under what conditions will the closed-loop system be stable/unstable?

A: **Stable** if all closed-loop poles are in the left half plane. Unstable if any closed-loop pole is in the right half plane. **Oscillatory** if the right-most pole is on the $j\omega$ axis.

Can we infer stability from the **open-loop** frequency response of the plant?

Marginal stability occurs when there is a **closed-loop pole** on the $j\omega$ axis.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow \begin{array}{|c|c|c|c|c|c|c|c|c} \hline \textbf{A} & \textbf{B} & \textbf{B
$$

A pole is a zero of the denominator of the (closed-loop) system function:

$$
G(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}
$$

If there is a pole at $j\omega_0$, then $|G(j\omega_0)| \to \infty$.

From Black's equation,

$$
G(j\omega_0) = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}
$$

\n
$$
|G(j\omega_0)| \to \infty \text{ if } K_p H(j\omega_0) = -1:
$$

\n•
$$
|K_p H(j\omega_0)| = 1 \text{ and}
$$

\n- \n
$$
|K_p H(j\omega_0)| = 1
$$
\n
\n- \n
$$
\angle (K_p H(j\omega_0) = -\pi \ (\pm k2\pi).
$$
\n
\n

Stability of the closed-loop system can be determined directly from $H(j\omega)$.

Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using a **compensator** as shown below.

We can use a **lead** compensator to increase the phase margin.

Lead Compensation

A lead compensator has no effect on the magnitude or phase at low frequencies.

Lead Compensation

A lead compensator can significantly increase phase margin (which is good). Unfortunately, it also reduces the gain margin a bit (which is not so good).

When adjusted appropriately, the increase in phase margin can more than compensate for the slight loss of gain margin.

Using a lead compensator with $z = 20$ and $p = 200$ has a very small effect. $K_p = 20$ $z = 20; \quad p = 200$

Moving the compensator to a lower frequency increases convergence rate. $K_p = 20$

 $z = 10; \quad p = 100$

Moving the compensator to a lower frequency increases convergence rate. $K_p = 20$

 $z = 5; \quad p = 50$

Convergence is dramatically improved when $z = 2$ and $p = 20$. $K_p = 20$

 $z = 2; \quad p = 20$

Convergence for $z = 1$ not as good as $z = 2$ – now loosing gain margin. $K_p = 20$ $z = 1; \quad p = 10$

The loss of gain margin is severe when $z = 0.5$.

The loss of gain margin is severe when $z = 0.4$.

The loss of gain margin is severe when $z = 0.35$.

The system is unstable when $z = 0.34$.

 $K_p = 20$ $z = 0.34; \quad p = 3.4$

Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let ω_0 represent the frequency at which the open-loop phase is $-\pi$. The closed loop system will be stable if the magnitude of the open-loop system at ω_0 is less than 1.

Useful metrics for characterizing relative stability:

- *•* gain margin: ratio of the maximum stable gain to the current gain
- *•* phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin (while also decreasing gain margin slightly).