








6.3100: Dynamic System Modeling and Control Design

Gain Margins, Phase Margins, and Lead Compensation

March 20, 2023



Controller Design: Big Picture in Review

Goal: Given a hardware system H(s) (the plant), design a controller K(s)
to achieve some set of performance goals.

+ K(s) H(s)
≠

X Y = G(s)X

The goals may be specified in the time domain

t

y(t)

steady-state

convergence

and/or frequency domain.
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Controller Design: Model-Based Approach

Measure æ Model æ Optimize æ Repeat

plant

(hardware)
model



Controller Design: Frequency Response Approach

Design a controller based solely on the frequency response of the plant.

+ K(s) H(s)
≠

X Y = G(s)X
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Controller Design: Frequency Response Approach

Is it possible to characterize performance using just frequency response?

+ K(s) H(s)
≠

X Y = G(s)X
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Controller Design: Frequency Response Approach

Design a controller based solely on the frequency response of the plant.

+ Kp H(s)
≠

X Y

Q: Under what conditions will the closed-loop system be stable/unstable?

A: Stable if all closed-loop poles are in the left half plane.

Unstable if any closed-loop pole is in the right half plane.

Oscillatory if the right-most pole is on the jÊ axis.

Can we infer stability from the open-loop frequency response of the plant?



Controller Design: Frequency Response Approach

Marginal stability occurs when there is a closed-loop pole on the jÊ axis.

+ Kp H(s)
≠

X Y

A pole is a zero of the denominator of the (closed-loop) system function:

G(s) = K
(s ≠ z1)(s ≠ z2)(s ≠ z3) · · ·
(s ≠ p1)(s ≠ p2)(s ≠ p3) · · ·

If there is a pole at jÊ0, then |G(jÊ0)| æ Œ.

From Black’s equation,

G(jÊ0) = KpH(jÊ0)
1 + KpH(jÊ0)

|G(jÊ0)| æ Œ if KpH(jÊ0) = ≠1:

•
---KpH(jÊ0)

--- = 1 and

• \(KpH(jÊ0) = ≠fi (±k2fi).

Stability of the closed-loop system can be determined directly from H(jÊ).



Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 1
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 2
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 5
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 10
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 20
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 30
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 32
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 33
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 1

gain margin
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 2

gain margin
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 5

gain margin
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 10

gain margin

Ê [log scale]

K
p

- - -H
(j

Ê
)- - -

[
d
B
]

40

0

≠40

≠60

Ê [log scale]

\1 H
(j

Ê
)2

[
r
a
d
.]

0

≠fi/2

≠fi

≠3fi/2
0.01 0.1 1 10 100

1

0 t [s]

0 5 10 15
closed-loop

step response



Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 20
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 30
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 32

gain margin
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where \(H(jÊ0) is ≠fi. The system will be

stable if the magnitude of H(jÊ0) is less than 1 and unstable otherwise.

Kp = 33

gain margin

Ê [log scale]

K
p

- - -H
(j

Ê
)- - -

[
d
B
]

40

0

≠40

≠60

Ê [log scale]

\1 H
(j

Ê
)2

[
r
a
d
.]

0

≠fi/2

≠fi

≠3fi/2
0.01 0.1 1 10 100

1

0 t [s]

0 5 10 15
closed-loop

step response



Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.

Kp = 1

Ê [log scale]

K
p

- - -H
(j

Ê
)- - -

[
d
B
]

40

0

≠40

≠60

phase margin

Ê [log scale]

\1 H
(j

Ê
)2

[
r
a
d
.]

0

≠fi/2

≠fi

≠3fi/2
0.01 0.1 1 10 100

1

0 t [s]

0 5 10 15
closed-loop

step response



Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.

Kp = 32
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Determining Stability from Open-Loop Frequency Response

Let Ê0 represent the frequency where |H(jÊ0)| = 1. The system will be

stable if the angle of H(jÊ0) is greater than ≠fi and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.

Kp = 1
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.

Kp = 33
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Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using

a compensator as shown below.

+ Kp L(s) H(s)
≠

X Y

We can use a lead compensator to increase the phase margin.
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Lead Compensation

A lead compensator has no e↵ect on the magnitude or phase at low fre-

quencies.

L(s) =
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Lead Compensation

A lead compensator can significantly increase phase margin (which is good).

Unfortunately, it also reduces the gain margin a bit (which is not so good).
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When adjusted appropriately, the increase in phase margin can more than

compensate for the slight loss of gain margin.



Improving Performance with Lead Compensation

Using a lead compensator with z = 20 and p = 200 has a very small e↵ect.
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

Kp = 20
z = 10; p = 100
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

Kp = 20
z = 5; p = 50
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Improving Performance with Lead Compensation

Convergence is dramatically improved when z = 2 and p = 20.
Kp = 20
z = 2; p = 20
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Improving Performance with Lead Compensation

Convergence for z = 1 not as good as z = 2 – now loosing gain margin.

Kp = 20
z = 1; p = 10
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.5.
Kp = 20
z = 0.5; p = 5
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.4.
Kp = 20
z = 0.4; p = 4
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.35.
Kp = 20
z = 0.35; p = 3.5
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Improving Performance with Lead Compensation

The system is unstable when z = 0.34.
Kp = 20
z = 0.34; p = 3.4
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Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let Ê0 represent the frequency at which the open-loop

phase is ≠fi. The closed loop system will be stable if the magnitude of the

open-loop system at Ê0 is less than 1.

Useful metrics for characterizing relative stability:

• gain margin: ratio of the maximum stable gain to the current gain

• phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin

(while also decreasing gain margin slightly).


