










6.3100: Dynamic System Modeling and Control Design

Gain Margin, Phase Margin, and Root Locus

March 22, 2023



Last Time

Design a controller based solely on the frequency response of the plant.
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Characterizing Performance

Important performance characteristics of a feedback control system
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−

X Y = G(s)X

may be specified in the time domain

t
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convergence

and/or frequency domain.
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These metrics are easy to compute from a model.

Other metrics work well for the frequency domain approach.



Characterizing Performance

Stability criteria based on the frequency response of the plant.

+ Kp H(s)
−

X Y

A pole is a zero of the denominator of the closed-loop system function:

G(s) = K
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

If there is a pole at jω0, then |G(jω0)| → ∞.

From Black’s equation,

G(jω0) = KpH(jω0)
1 +KpH(jω0)

|G(jω0)| → ∞ if KpH(jω0) = −1

•
∣∣∣KpH(jω0)

∣∣∣ = 1 and

• ∠(KpH(jω0) = −π (±k2π).
} open loop



Controller Design: Frequency Response Approach

Specify performance parameters based on the plant’s frequency response.
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Check Yourself

Use the following stability criteria

•
∣∣∣KpH(jω0)

∣∣∣ = 1 and

• ∠(KpH(jω0) = −π (±k2π)
}KpH(jω0) = −1

to determine values of Kp (if any) for which the following system is

marginally stable.
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Controller Design: Frequency Response Approach

Gain and phase margin characterize stability of the closed-loop system

(G = Y/X) in terms of properties of the open-loop system (H(s)).

+ Kp H(s)
−

X Y

These same stability criteria

KpH(jω0) = −1

•
∣∣∣KpH(jω0)

∣∣∣ = 1 and

• ∠(KpH(jω0) = −π (±k2π).

underlie other important design tools → root locus.



Root Locus

A root locus shows points in the s-plane that are poles of the closed loop

system function (G(s) = Y
X ) for values of Kp > 0.

+ Kp H(s)
−

X Y

Example: Points of the following root locus indicate the closed-loop poles

that result for different values of Kp.

Re(s)

Im(s)

A root locus is easy to calculate from a model. Given the poles and zeros

of H(s), we can use Black’s equation to find the poles of G(s) = KpH(s)
1+KpH(s)

and then find the roots of the denominator numerically.



Root Locus

A root locus shows points in the s-plane that are poles of the closed loop

system function (G(s) = Y
X ) for values of Kp > 0.

+ Kp H(s)
−

X Y

Example: Points of the following root locus indicate the closed-loop poles

that result for different values of Kp.

Re(s)

Im(s)

A more intuitive (and often informative) method is to solve the stability

criteria from last time using vectors.



Vector Analysis

The frequency response of a system composed of adders, gains, and

integrators

H(jω0)cos(ω0t) |H(jω0)| cos (ω0t+ ∠H(jω0))

can be determined from vectors associated with the system’s poles/zeros.

H(jω0) = K
(jω0 − z0)(jω0 − z1)(jω0 − z2) · · ·
(jω0 − p0)(jω0 − p1)(jω0 − p2) · · ·

z0
z0

jω
0−
z 0

jω
0

s-plane
jω0

Useful for constructing frequency responses in general and Bode plots in

specific. Combine with stability criteria to generate a root locus.

•
∣∣∣KpH(jω0)

∣∣∣ = 1 and

• ∠(KpH(jω0) = −π (±k2π)
}KpH(jω0) = −1



Root Locus

The shape of the root locus follows from a few simple rules.

G(s) = KpH(s)
1 +KpH(s)

Starting Rule: Each root locus branch starts at an open-loop pole.

For small values of Kp, the denominator of G(s)→ 1 and

G(s)→ KpH(s)
The closed-loop poles of G(s) are equal to the open-loop poles of H(s).

The following plot shows the open-loop poles and zeros of a plant H(s):

Re(s)

Im(s)

The associated root locus has 3 branches, one starting from each pole.



Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles

to the right of the point plus # of zeros to the right of the point is odd.

If a system contains just adders, gains, and integrators, then poles (and

zeros) with nonzero imaginary parts come in conjugate pairs, and do not

contribute to the angle of H(s) if s is on the real axis.

θ

-θ

A real-valued pole or zero contributes 0 or π to the angle of H(s0) depending

on whether s0 is to the right or left of the pole or zero.

θ = 0

s0

θ = π

s0



Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles

to the right of the point plus # of zeros to the right of the point is odd.

Examples:



Root Locus

Break-Away Rule: Increasing Kp after two real-valued closed-loop poles

collide causes them to split off the real axis.

The left panel below shows two real-valued, closed-loop poles approaching

each other. Notice that their angles sum to π prior to collision.

The right panel below shows that the angles still sum to π after the collision.

θ = πθ = 0 π − θθ



Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N > 0, there

will be N high-gain asymptotes with angles at odd multiples of π/N .

When |s| is large, vectors from the poles and zeros of H(s) to s will be

approximately equal. Since the angle from a pole will be equal to the

angle from a zero, the angles from pole/zero pairs will cancel, leaving a

net number of excess poles (N) whose angles must sum to π.

θ = π
N



Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N , there will

be N high-gain asymptotes with angles at (2n+ 1)π/N .

Zero Excess Poles

(no asymptotes)

θ = π

One Excess Pole

(one asymptote)

θ = π/2

θ = −π/2

Two Excess Poles

(two asymptotes)

θ = π/3

θ = −π/3

θ = π

Three Excess Poles

(three asymptotes)



Root Locus

Mean Rule: If # of poles is at least two greater than the # of zeros, then

the average closed-loop pole position is independent of Kp.

Example:

H(s) = s+z
(s+p1)(s+p2)(s+p3)

G(s) =
s+z

(s+p1)(s+p2)(s+p3)

1 + Kp(s+z)
(s+p1)(s+p2)(s+p3)

= s+z
(s+p1)(s+p2)(s+p3) +Kp(s+z)

= s+z
s3 + (p1+p2+p3)s2 + (p1p2+p1p3+p2p3)s+ (p1p2p3) +Kps+Kpz

= s+z
s3 + (q1+q2+q3)s2 + (q1q2+q1q3+q2q3)s+ (q1q2q3)

The sum of the closed-loop poles (qi) does not depend on Kp.



Root Locus

Ending Rule: Each root locus branch ends at an open-loop zero or ∞.

If Kp is large, then |H(s)| must be small so that the magnitude criterion

|KpH(s)| = 1
is satisfied.

|H(s)| will be zero

(a) if s is equal to an open-loop zero, or

(b) if H(s) has more poles than zeros and s→∞.

Rule 2b follows from the factored representation for H(s):

H(s) = K
(s− z1)(s− z2)(s− z3) · · · (s− znz )
(s− p1)(s− p2)(s− p3) · · · (s− pnp)

If the number of poles (np) equals the number of zeros (nz), then

lim
|s|→∞

= K

But if np > nz, as |s| → ∞, H(s) will approach K/s(np−nz) → 0.



Summary

Today we focused on applications of stability criteria based on gain and

phase margins

Combining these criteria with the vector method we used to evaluate fre-

quency responses provides an intuitive and often informative way to think

about root locus plots.


