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6.3100 Lecture 18 Notes — Spring 2023

Pole placements and propellor arm example
Dennis Freeman and Kevin Chen

Outline:
1. Review of state-space control
2. Pole placement: choosing K and Kr
3. Example: inverted pendulum
4. Example: propellor arm

1. Review of state-space control
Thus far we have introduced state space control without explaining how to design the controller.
First, let’s review the formulation. A state-space system is given by:

E x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

where u, y, and x are the input, output, and state variables. The core question is how do we
design the input control signal u(t)?

From the first lecture of this semester, we learn that the simplest controller is a proportional
controller:

u(t) = K, (r(t) = y())
Following a similar form, we can use proportional feedback on the state:
u(t) = K,.r(t) — Kx(t)

Note that r(t) is a scalar and it represents the reference or desired signal, and x(t) is a vector. So
K, is a scalar, and K is a n x 1 matrix. The design question we need to answer is how to choose K
and K.

We can rewrite the matrix system by making substitutions:

Ex = Ax + B(K,r — Kx)
x=E*Ax + E71B(K,r — Kx)
x=EY(A-BK)x+ E'BK,r

From this condition, we know that the closed-loop system is stable if

real (eig(E‘l(A - BK))) < 0 for all eigenvalues

There are many methods of choosing K and K,.. Today, we are going to introduce the pole
placement method.



April 13,2023

2. Pole placement: choosing K and Kr

The core idea of the pole placement method is to directly set the eigenvalues of A-BK by choosing
the “feedback” matrix K. The closed-loop system is stable if the real parts of all eigenvalues of A-
BK is negative. Even if the open loop system A may be unstable, we can try to stabilize a system
by using the feedback matrix K. That is, try to design K such that the matrix A-BK is stable.

Here, we will go through an example. Consider the line-following example introduced in the third
week of the semester, the A and B matrices are given by:

4=[o ole=[}

In the closed-loop form, the A-BK matrix is given by:

0 4
A= Bx=| ]
=Yy ~ =iy
For this problem, let'ssetV = landy = 2.
Let’s aim to choose K such that we can set A; = —1,and 1, = —2. We can write:

eigen(A —BK) - 0= (s — 0)(s — (—vky)) — V(-vky)

=52+ yk,s + Vyk,

=52 + 2k,s + 2k,
We have chosen the eigenvalues, which give:

(s =)= 2) =52+ (=4, — )s + 414,
We can use this equation to solve for k; and k,:
ki =1k, =15
In practice, we can use the MATLAB function place(). The syntax is:
K = place(A, B, [, 13])

The method of pole placement directly sets the eigenvalues, which is intuitive on aspects of
system convergence rate and stability. However, it is not intuitive on the control effort. How hard
are we driving the actuators? We will introduce another control design method next class.

After we set the matrix K, we can choose the matrix K,.. Here, we can choose K, to remove the
steady-state error. At the steady-state condition, we have:

Ex =0 = Ax + B(K,r — Kx)
y =Cx=—C(A— BK)"'BK,r
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To make sure the output y is equal to reference r, we need to have:
1=—-C(A— BK) 'BK,
So we need to set:

—1

K =Ca—Br) '8

3. Example: inverted pendulum

We introduced the inverted pendulum example last week. The state space equation is given

by:
i(e)_( 0 1)(9)+( 0 )T
dt\e/ ~\g/l 0)\@ 1/ml?
% 0
0= 0)(9)+0r
In lecture 16, we set the A, B, C, D, and E matrices to:

A=(908 (1))"9=(10000)'C=(1 0),D=o,5=((1) (1))

Suppose we want to maintain the pendulum at the inverted angle: r = 0. Then we simply
have K, = 0, and u = —Kx. Note that the system is intrinsically unstable. To stabilize it, let’s
set the eigenvalues of A-BK to -1 and -10. We can write:

K = place(A, B,[-1 — 10])
MATLAB will return K = /0.1080, 0.0110].

While this is easy to implement, it is not intuitive on what are the optimal eigenvalues or pole
locations. Again, we will introduce a more intuitive control approach in next lecture.

4. Example: propellor arm

In lab 2 and 3, we experimented with a propellor arm system using PD or PID control. Now we
will introduce a state-space formulation and show the connection between this formulation and
classical control. A sketch of the propellor arm is shown below.

wrmazey.
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This system is characterized by three differential equations:

db, £
dt e Wa
dWa A'Uemf
]a dt et ktla k_e
d k. k k.. k
Jm —Av = —(—lli-+k)Av + "2 _Av
ot BRI R= 1R B

In these equations, the control variable is Av,,,,,, the state variables are [0, Wa, AVems], and the
output variable is 8,. We can rewrite the equations in the matrix form:

0 1 0 0
150, 09" e il gt Tl Y 0
0-Ji- 0 'Wa = ke Wa |+ Kok, Avywm
0 0 Jm Avemf 0 0 kmke b AVem}" ﬁR—
IR el
Oq
B,=[1 0 0]| Wa |[+0XAv,,,
A'Vemf

The core idea here is that 6, and w, describe the propellor arm dynamics, and Av,,, s describes
the motor dynamics. Next, let’s look at the connection of state space controller to a PD controller.
In the case of PD control, we have:

u = K, (04 — 604) + Ka (64 — 6,)
If we stabilize near the equilibrium condition (that is set 8 to 0), then we have:
u = Kp0y — K,0, — K46,
We can compare this with state-space control:
u=K,r— Kx = K.0; — k6, — k364 — k3DVeps

We can match coefficients to realize that the PD controller and the state-space controller are
similar:

K, = K,
ky, = K,
k; = Ky
ks = 0

Note that a PD controller is the same as a state-space controller when the term k; is set to 0. So
a state space controller is more general. We'll learn in next class how to design a good state space

controller.

SRR



