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Objectives

• Summarize reinforcement learning (RL)

• Identify similarities & differences between RL and state-space control

• Assess strengths & limitations of both approaches

• Recognize the potential to combine RL and state-space approaches
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Outline

• Review of state-space control

• Overview & discussion of reinforcement learning (RL)

• Highlight of research bridging RL and state-space control
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State-space control: Block diagram
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System
𝑥̇ = 𝐴𝑥 + 𝐵𝑢

𝑢 𝑥

Controller
𝑢 = 𝐾!𝑦" − 𝐾𝑥

𝑦"

𝐶 𝑦



State-space control: Design approach
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Standard form 
for system

Parameters for 
metric

𝑥̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

LQR: ∫!
"(∑#$%#'()(*'𝑞#𝑥#(𝑡) + ∑+$%

#,-./(' 𝑟+𝑢+(𝑡))𝑑𝑡

Optimizer

𝐾 = 	lqr(𝐴, 𝐵, 𝑞#’s,	𝑟+’s)

Controller in a 
standard form

𝑢(𝑡) = 𝐾0𝑦1 𝑡 − 𝐾𝑥(𝑡)

𝐾! = − 𝐶 𝐴 − 𝐵𝐾 "#𝐵 "#

Goals:
1) Stabilize the system	(𝑦 → 𝑦!)
2) Good performance on metric
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What is reinforcement learning?
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Machine learning (ML): 
Techniques that 

automatically learn from 
examples (e.g., data)

Note: Circles are not drawn to scale!

Reinforcement 
learning (RL): Branch 

of ML focused on 
learning control policies 

(via trial-and-error)



Block diagrams
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System
[black box]

𝑢

𝑥

Controller

Reward

State-space control

Reinforcement learning



RL: Design approach (“trial-and-error”)
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System
(or simulator)

𝑢

Controller
w/ update strategy

Reward Goal: Good 
performance on reward

When is learning “done”?
• When some stopping 

criterion is met    
(e.g., convergence)

• Never              
(“lifelong learning”)

Note: In practice, controller is updated based on a sequence of states and actions over some time horizon (“episodes”), 
to maximize a discounted cumulative reward that weights present states more heavily than future states.

(note: must initialize with 
some value at t = 0)

𝑥
(or simulator)

w/ update strategy



Block 
diagram

Design 
approach

Goal 1) Stabilize the system (𝑦 → 𝑦1)
2) Good performance on metric Good performance on reward

State-space control 
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vs. RL

Goal 1) Stabilize the system (𝑦 → 𝑦1)
2) Good performance on metric Good performance on reward

Block 
diagram

Design 
approach



Goals Stability and performance Performance (may include stability)

System Known (function & parameters) Unknown (but interactable)

Controller Simple function w/ design params Usually more complicated [next slide]

Perform. 
metric

Cost

Needs to be “very nice”

Hand-designed

Present & future matter equally

Reward (negative cost)

Does not need to be “as nice”

From system (and/or hand-designed)

Future matters less than present 
(use of “discount factor”)

Design 
technique Solve an optimization problem Learn through interaction with system

State-space control 
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vs. RL
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RL: What does the controller look like?
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A non-exhaustive, but useful taxonomy of algorithms in modern RL
From: https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html 

Policy optimization: Function 
mapping from states to actions
• Learn: Parameters of function

Q-learning: Action-chooser 
(often greedy) based on approx. 
of conditional expected reward
• Learn: Approx. of conditional 

expected reward

Model-based methods: Some 
type of planning algorithm
• Learn: Approx. system model

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html


+ Better average-case performance due 
to expressive control policies & data

- Can fail catastrophically
- Usually “black box” controllers

±Doesn’t assume knowledge of system 
(may be prudent, may be wasteful)

State-space control vs. RL: Pros and cons
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State-space control Reinforcement learning

- Reduced average-case performance 
due to simplifying assumptions

+ Can come with provable guarantees
+ Interpretable controllers

±Assumes knowledge of system    
(may be useful, may be incorrect)



Outline

• Review of state-space control

• Overview & discussion of reinforcement learning (RL)

• Highlight of research bridging RL and state-space control
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A state-space approach: Robust LQR
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Standard form 
for system

Parameters for 
metric

Optimizer Controller in a 
standard form

Stability certificate
(e.g., Lyapunov 

function)

Solve for a good controller with provable stability 
guarantees, plus a certificate of provable stability



An RL approach: Policy optimization
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Model 
𝒉𝜽𝑥 𝑢

States ActionsFunctional 
form of model

Model 
parameters

System

Learn the parameters of a function mapping from states to actions  



An RL approach: Policy optimization
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Model 
𝒉𝜽𝑥 𝑢

System

Reward info

Learn the parameters of a function mapping from states to actions  

Update parameters via trial-and-error using info about reward (“reward feedback”) 



An RL approach: Policy optimization

19

Model 
𝒉𝜽𝑥 𝑢

System

Learn the parameters of a function mapping from states to actions  

Update parameters via trial-and-error using info about reward (“reward feedback”) 

Function can be a deep neural network (“deep reinforcement learning”)

Reward info
(gradients)

…

𝜃

ℎ!,#! ℎ$,#"



Combined: Deep RL w/ robust LQR projection
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Model 
𝒉𝜽𝑥
…

𝜃

ℎ!,#! ℎ$,#"

𝑢
System

Get set of stabilizing actions using robust LQR stability certificate

Project neural network outputs onto this set of actions

Yields deep reinforcement learning policy with provable robustness guarantees

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control 
guarantees within neural network policies." Intl. Conf. on Learning Representations (ICLR) 2021.

Reward info
(gradients)
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Illustrative results: Synthetic NLDI system
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Non-robust methods
(from control and RL)

RL + robust 
control methods

Robust 
control

Unstable

Stable

Using RL + robust 
control can lead to:

• Improved 
“average-case” 
performance over 
robust baselines

• Provable stability 
under “worst-
case” dynamics 
(unlike non-robust 
baselines)

[lower is better]

21Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. "Enforcing robust control 
guarantees within neural network policies." Intl. Conf. on Learning Representations (ICLR) 2021.



Many ways to bridge machine learning & control
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Recap

• Overview of reinforcement learning (RL)

• Some similarities & differences between RL and state-space control

• Some strengths & limitations of both approaches

• One example of combining RL and state-space approaches
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