Problem $1)$ A) $1)$ $X_{t} = Z \times_{t} + L \times (Z = \Sigma)$ $X_{d} (1 - Z) = \frac{1}{7} C_{d}$ $C_0 = 2X_1(1-z)$ $Z = 0.5 =$ $C_6 = X_d$ $Z=0.9$ = $C_{0}=0.2$ X_{d} 2) from above, we know in a $Putint with $z = 0.9$ $\chi_{2} = 5c_{0}$.$ Lets call $Z = 0.5$ $Pu+1en+5$ e^{15} $\mathcal{L}_{\mathfrak{0}} = \chi_{\mathfrak{1}}'$

If we give $C_6 = \chi_1'$ to $Z = 0.9$ $P_{h+i}en_1, Th_iS P_{h+i}en_1 n_S R_{lvl}Ss_1ran$ Concentration of $S \times d$, $S \times d$ Expected (Uncentrium (Not Good) $B)$)) no 052 illutiun Means $\lambda > 0$. $5435+744$ $(n-1)$ 147 m_{0}
 e $X[N] = Z X [n-1] + \frac{1}{2} K_{\rho} (X_{l} - X[n-1])$ $\chi(n) = \frac{1}{2}k_{p}\times1+(2-\frac{1}{2}k_{p})\times[n-1]$ first order model, d is above $\lambda = \frac{1}{2} - \frac{1}{2} k_{p} > 0$

 K_{ρ} < 2.2

L can range Betveen 0.5 & 0.9, Lets be safe and assume $Z=0.5$ $K_{\rho} = 1$

 Z) In Steady State, $X(N)=X[N+]=X_{S}$ $\chi_{\scriptscriptstyle\langle\langle}=\frac{1}{2}\kappa_{\scriptscriptstyle P}\,\chi_{\scriptscriptstyle\lambda}+\left(2-\frac{1}{2}\kappa_{\scriptscriptstyle P}\,\right)\,\chi_{\scriptscriptstyle\langle\langle}$

 $X_{55} (1 - 2 + \frac{1}{2}k\rho) = \frac{k_{P}}{2}x_{l}$

 $kp=1$ = $\frac{Y_{13}}{X_{1}} = \frac{1/2}{\frac{3}{2}-2}$ $3 - 22$ $Z = 0.5 \Rightarrow \frac{X_{ss}}{X_{2}} = \frac{1}{2}$ $Z = 0.9 \Rightarrow \frac{X_{51}}{X_{1}} = 0.833$ With P control, Our Xs ranges between 50% and 83% of our desired $COMCen HVA + i UN$, Mach less variable than O P_{R} $Log's$ Z_0 % $-log\%$ $rank, Mrj$ is be $+$ ter.

 $\begin{pmatrix} \ \ \end{pmatrix}$ $C[n-1]=K_{1}X(X_{t}-X[n-1])+K_{1}S[n-1]$ $X(n) = \frac{1}{2}k_{12}X_{2} + (2-\frac{1}{2}k_{12})X[n-1]+ \frac{1}{2}k_{1}S[n-1]$ $SCnJ = SCn-J + X_{L} - XCn-J$

 Z) How do \overline{A} , \overrightarrow{B} , and X affect
our Steady State \overrightarrow{X}_{SS} ? If an of our I's have magnitude \langle 1, then $\overrightarrow{\chi}(n) = \overrightarrow{\chi}(n+1) = \overrightarrow{\chi}_{\overrightarrow{\chi}}$ $\overrightarrow{\chi}_{e} = \overrightarrow{A} \overrightarrow{\chi}_{fs} + \overrightarrow{B} \cdot X_d$ $\vec{X}_{ss} - \vec{A} \times_{sr} = \vec{B} \cdot X_{l}$ $(\top - \overline{A})\overrightarrow{X}_{S} = \overrightarrow{B}\cdot X_{d}$ $\overrightarrow{\chi}_{55} = (\overline{1} - \overline{A})^1 \overrightarrow{\beta} \cdot \overline{\chi}_{1}$ If we Know X_{1} and $(I-\overline{A})^{-1}\overrightarrow{\beta}$, we can find X_{ss}

\n
$$
OK, \text{ What } d_{1}es \left(\frac{1}{1} - \overline{A} \right)^{-1} \overrightarrow{B} \neq 0
$$
 as about the $Verah-funshiP$ between X_{d} and \overrightarrow{X}_{ss} ?\n

\n\n $M_{4}t_{ab}$ says $\left(\frac{1}{1 - \overline{A}} \right)^{-1} \overrightarrow{B}$ is:\n $\left[\frac{1}{2(1 - \overline{A})} \right]$ \n

\n\n $\vec{X}_{ss} = \left[\frac{X[\infty]}{s[\infty]} \right] = \left[\frac{1}{2(1 - \overline{A})} \right] X_{d}$ \n

\n\n $X[\infty] = X_{d}$ \n

\n\n $X[\infty] = X_{d}$ \n

\n\n $X[\infty] = X_{d}$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right) \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right) \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right) \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right) \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \right)$ \n

\n\n $W_{a}t_{a} = \frac{1}{2} \left(\frac{1}{1 - \overline{A}} \$

 $\tilde{A}_{new} = \begin{bmatrix} 2 - k_p \\ 0 \end{bmatrix}$

 $\begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix}$

$$
D(2) \qquad F \qquad \qquad \text{and} \qquad \
$$

$$
\widetilde{B} = \overline{E}^{-1} \overline{B} = \begin{bmatrix} k_{\frac{p}{2}} \\ 1 - \frac{k_{\rho}}{2} \end{bmatrix}
$$

$$
\left(\mathbf{I} - \mathcal{A}\right)^{-1} \widetilde{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{2(1-z)}{k} & 0 \end{bmatrix}
$$

Same as Part C 2

 $Prblem2)$ 0 ur β :n Should have α non Zero $ComPenF$ $ONry$ in the States directly affected by $error(n)$. (Sam (n) and $\alpha(n)$ $Q(n) = (1 + 0TB) d(n-1) - 0TBY_{a} [K_{p}e(n-1)]$ k_d der $[n-1]$ K_i sum $[n - 1]$

 S_{μ} M $[n] = \Delta T \mathcal{C}[n] + S_{\mu}M[n-1]$

 $In A[n]$, The Coefficients with $e[n]$ are The coefficients in B_{in} (Because e $LnJ = \theta_{1}$ - $OLnJ$) The same LOGIC fullows for Sum $[n]$.

$$
\beta_{in} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ -\beta \Delta T \gamma_{n} k_{p} \\ \Delta T \end{bmatrix}
$$

TD Check our work, we can Make Sure tuat in Steudy State $\Theta[n] = \Theta[n - 1] = \Theta_n$

We use $(\overline{I}-\overline{A})^{-1}\overrightarrow{\beta}_{in}$ to find Steady state vector.

 TO find $B_{J, 15f}$, think about how we an "inject" ^a disturbance force into our system On first thought, we might think to inject the disturbanie force into ^a as ^a represents angular $accel$ eration In reality, α represents acceleration due to the force coming from the propellers.
With an undistarbed System, these two quantities are the Same. For this problem this is not true

W is the angular velocity of our arm All forces
Contribute to it. It makes the most sense to "inject" Our distorbance force into the WEN) state.

$$
\vec{B}_{\text{diff}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}
$$

To be safe we can make fare ^A disturbant force $[W^{[1]}]$ lead to a Zero error in \mathcal{O}_{α} and \mathcal{W}_{α}

We See ω a disturbant force. X does not go to Zero because
The PMPeller may need to generate a force to
counteract the Steady state distarbance force