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We suggest writing your solutions in a separate document and then turning it into a pdf
(scan it or take pictures if you like to use pencil and paper). And PLEASE INCLUDE YOUR
DERIVATIONS!! We have no way of verifying your understanding with just a numerical
answer, particularly if there were a minor calculation error.

Problem One
A clinician is trying to determine if feedback can be used for dosage control of a particular

medication. Using daily measurements for hundreds of patients, the clinician has generated
a simple model for the relationship between daily dosage, denoted c[n] where n is the day
index, and daily-measured bloodstream concentration, denoted x[n] (we assume the data has
been appropriately normalized for patient age, weight, etc).

The clinician’s simple model is

x[n] = ζx[n− 1] +
1

2
c[n− 1]

where ζ is a degradation factor that varies between 0.5 to 0.9, depending on the patient. In
words, the clinician’s model says that in one day, somewhere between ten to fifty percent
of the medication already in the bloodstream decays away, and about half of the previous
day’s dosage is in the bloodstream.

Part A)

• 1) Suppose c[n] = c0, a fixed dosage. If the desired steady-state bloodstream concen-
tration is xd, as a function of xd, what should c0 be if ζ = 0.5? What if ζ = 0.9?

• 2) If you use c0 concentration for ζ = 0.5 on a patient with ζ = 0.9, what will the
steady-state bloodstream concentration be for that patient? If you do not know the
degradation factor for the patient, should you use the c0 assuming ζ = 0.9 or c0
assuming ζ = 0.5?

Part B)
Suppose we try using proportional control, so that

c[n] = Kp (xd − x[n]) .

• 1) If we never want the bloodstream concentration to oscillate regardless of ζ (so the
natural frequency should NOT be negative), what is the maximum Kp we can use?



• 2) Using the maximum Kp you just determined, what will the steady-state bloodstream
concentration be, as a fraction xd, over the range of ζ from 0.5 to 0.9. Did the feedback
control approach improve the situation?

Part C)
In order to improve the approach to steady-state, consider including integral control as

in
c[n] = Kp (xd − x[n]) +Kis[n]

where
s[n] = s[n− 1] + (xd − x[n− 1]) .

Notice that the formula above is NOT the same as the formula in lab. We will examine the
differences below.

We can write a 2 × 2 system of equations to describe the model and control, using the
matrix A and the vector B as in[

x[n]
s[n]

]
=

[
a11 a12
a21 a22

] [
x[n− 1]
s[n− 1]

]
+

[
b1
b2

]
xd

where

A =

[
a11 a12
a21 a22

]
and

B =

[
b1
b2

]
.

• 1) Determine the values of the A matrix and the B vector in terms of Kp, Ki, ζ and
xd.

• 2) Recall that when the eigenvalues of A (aka natural frequencies) are less than one
in magnitude, then the formula for the steady-state is (I−A)−1B. Show that if
Ki > 0 (and the eigencondition holds) that the steady-state bloodstream concentration
matches xd for any ζ.

• 3) How would you decide if a pair of values for Kp and Ki are good? What criteria
would you use? How would you search for them?

Part D) You may have noticed that in lab, we stated a formula for s[n] that was a little
different than the one above, it was

s[n] = s[n− 1] + (xd − x[n]) .

The reason the formula directly above might be preferable is that one might expect the sum
of all past errors on the nth step should include the nth error, and our earlier formula did
not (and in fact, in lab we steered you to an implementation that was inconsistent with the
lab formula).



If we want to implement the above formula, we will need x[n], but that variable is on the
left side of the equation. So lets invent a 2 × 2 E matrix,[

e11 e12
e21 e22

] [
x[n]
s[n]

]
=

[
a11 a12
a21 a22

] [
x[n− 1]
s[n− 1]

]
+

[
b1
b2

]
xd

where e11 = e22 = 1, and we can pick e21 and e12 to implement our equation for s[n] that
includes x[n]. Then when we are done, we can invert that E matrix and form Ã = E−1A
and B̃ = E−1B.

• 1) Determine the values e12 and e21 to implement the improved equation for s[n].

• 2) Show that the steady-state match when Ki > 0 still holds.

Problem Two
For this problem, based on your implementation of the A matrix from lab, determine

two B vectors, a Bin that is scaled by θd[n] in the state space description, and a Bdisturb that
is scaled by udisturb, the disturbance associated with dropping the weight on the arm. That
is, find the values in the 5 × 1 vectors in

~x[n] = A~x[n− 1] + Binθd[n− 1] + Bdisturbudisturb[n− 1].

Think carefully about what state equation is directly affected by the disturbance, and then
show that when Ki > 0, the steady-state value of propeller arm angle is unaffected by the
disturbance.

Hint: In determining Bdisturb vector, which entry is non-zero? You can answer that
by determining which equation is affected by dropping the weight onto the arm. Then since
Bdisturb is scaled by udisturb, you can normalize the nonzero entry in Bdisturb to one.

This problem does not require much work (let the computer invert the matrices), but it
does require some careful thought.


