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Last Time: Stability from Open-Loop Frequency Response

If Kp,H(jwo) = —1 then the closed-loop system has a pole at s = jwy.

X—»@—» H(jw) > Y
T_

From Black’'s equation,

. Y K, H(jw
Gljwo) = = = M
X 1+ K,H(jwo)

If KpH(jwo) = —1, then |G(jwo)| = oo

But G(s) can also be written as a ratio of first-order factors:
(s —21)(s —22)(s — 23) - -

(s =p1)(s =p2)(s —p3) -

and if G(jwp) — oo then jwy is a root of the denominator.

G(s) =

The closed-loop system G(s) must have a pole at s = jwy.



Gain Margin

Let w, represent the frequency where Z(H (jw,) is —.
The magnitude of KpH(jwa) is < 1, so the closed-loop system is stable.

K,=1
o ;
o, 40 1
20
=
) i
—60-, . . . \. w [log scale]
(& ,
= e 0+ : : 't [s]
S i 0 5 10 15
C;\\ closed-loop
= —7 A step response
=
g
—3m/2- . . , w [log scale]

0.01 0.1 1 10 100



Gain Margin

Let w, represent the frequency where Z(H (jw,) is —.
The gain margin is about 32 dB.
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Gain Margin

Let w, represent the frequency where Z(H (jw,) is —.
When the gain margin goes negative, the closed-loop system is unstable.
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Phase Margin

Let wy, represent the frequency where |K,H (jwy,)| = 1.
The angle of H(jw,,) is greater than — so the closed-loop system is stable.
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Phase Margin

Let wy, represent the frequency where |K,H (jwy,)| = 1.
The phase margin is almost 7r/2.
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Phase Margin

Let wy, represent the frequency where |K,H (jwy,)| = 1.
When phase margin goes negative, the closed-loop system is unstable.
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Two New Metrics: Gain Margin and Phase Margin

We would typically specify some minimum gain margin and some minimum
phase margin.
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From the Imaginary AXis ...

The closed-loop system will have a zero at s=jwy if K,H (jwy)=—1.

X—»@—» H(jw) > Y
T_

From Black’s equation,

. _ Y KpH(jwo)
Glwo) = % =1 ¥ K, H (juwo)

If KpH(jwo) = —1, then |G(jwo)| — o0

But G(s) can also be written as a ratio of first-order factors:
(s —z1)(s — 2z2)(s — 23) - - -
(s —p1)(s —p2)(s —p3)- -

and if G(jwy) — oo then jwy is a root of the denominator.

G(s) =

The closed-loop system G(s) must have a pole at s = jwyp.



. to the Entire Complex Plane

The closed-loop system will have a zero at s=sq if K,H(so)=—1.

X—>@—> H(s) >V
¥

From Black’s equation,

Y  K,H(so)

X 1+ K,H(so)

G(s0) =

If KpH(so) =—1, then |G(so)| = o0

But G(s) can also be written as a ratio of first-order factors:
Gs) = g5 = 20)(s = 2) -
(s —p1)(s —p2)(s —p3)- -

and if G(s) — oo then sg is a root of the denominator.

The closed-loop system G(s) must have a pole at s = sg.
The collection of all such sq is called a root locus.



Root Locus
A root locus shows points in the s-plane that are poles of the closed loop

system function G(s) =Y/X for values of K, > 0.

X—»@—» His) s v
Example: Root locus for H(s) !
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—— Re(s)

Given an expression for H(s) we can easily calculate the poles of the
closed-loop system function G(s) numerically.



Root Locus

A root locus shows points in the s-plane that are poles of the closed loop
system function G(s) =Y/X for values of K, > 0.

X—»@—» His) s v
Example: Root locus for H(s) !
X : u = el
P TP
Im(s)

& < Re(s)

A more intuitive (and often more informative) method is to solve the sta-
bility criteria using vectors to represent the open-loop transfer function
H(s).



Vector Analysis

The transfer function of a system composed of adders, gains, differentia-
tors, and integrators can be determined from vectors associated with the
system’s poles/zeros.

Hi(so) = K\Z0 2050 = 21)(s0 = 22) -
(50 —po)(s0 —p1)(s0 —p2) - -
50 s-plane
S0
S0—%0
20 20

Combine the vector representation with the stability criteria:

. ’KpH(so)’ — 1 and

o /(KpH(so) = —m (£k2m) } KyH(s9) = —1

to find the root locus.



Vector Analysis

The transfer function of a system composed of adders, gains, differentia-
tors, and integrators can be determined from vectors associated with the
system’s poles/zeros.

Hi(so) = K\Z0 2050 = 21)(s0 = 22) -
(50 —po)(s0 —p1)(s0 —p2) - -
50 s-plane
S0
S0—%0
20 20

Combine the vector representation with the stability criteria:

. ’KpH(so)’ — 1 and

o /(K,H(sp) =—m (£k2m) } K,H(sp) = —1

Surprisingly, the angle relation is easiest to work with.



Root Locus

The shape of the root locus follows from a few simple rules.

_ KpH(S)
Gls) =17 K,H(s)

Starting Rule: Each root locus branch starts at an open-loop pole.

For 0 < K, << 1, the denominator of G(s) — 1 and

G(s) = K,H(s)
The closed-loop poles of G(s) are equal to the open-loop poles of H(s).
Example: The following plot shows open-loop poles/zeros of a plant H(s):

Im(s)

Re(s)

The associated root locus has 3 branches, one starting from each pole.



Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles
to the right of the point plus # of zeros to the right of the point is odd.

If a system contains just adders, gains, differentiators, and integrators, then
poles (and zeros) with nonzero imaginary parts come in conjugate pairs,
and do not contribute to the angle of H(s) if s is on the real axis.
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A real-valued pole or zero contributes 0 or 7w to the angle of H(so) depending
on whether sg is to the right or left of the pole or zero.
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Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles
to the right of the point plus # of zeros to the right of the point is odd.

Examples:

N




Root Locus

Break-Away Rule: Increasing Kp after two real-valued closed-loop poles
collide causes them to split off the real axis.

The left panel below shows two real-valued, closed-loop poles approaching
each other. Notice that their angles sum to 7 prior to collision.
The right panel below shows that the angles still sum to « after the collision.




Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N>0, there
will be N high-gain asymptotes with angles at odd multiples of 7r/N.

When |s| is large, vectors from the poles and zeros of H(s) to s will be
approximately equal. Since the angle from a pole will be equal to the
angle from a zero, the angles from pole/zero pairs will cancel, leaving a
net number of excess poles (IN) whose angles must sum to .
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Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N, there will
be N high-gain asymptotes with angles at (2n+1)7/N.

Zero Excess Poles One Excess Pole
(no asymptotes) (one asymptote)
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Root Locus

Mean Rule: If # of poles is at least two greater than the # of zeros, then
the average closed-loop pole position is independent of Kp.

Example:
H(s) = stz
(s+p1)(s+p2)(s+p3)
Ss+z
G(s) = : f+p1)(82§(23i82+)p3)
(s+p1)(s+p2)(s+p3)
o stz
~ (s+p1)(s+p2)(s+p3) + Kp(s+2)
_ S+z
S+ (pr+p2tps)s® + (pipa-tpips+paps)s + (p1p2ps) + Kps+Kpz
stz

83 + (p14+p2+p3)s? + (p1p2+p1p3+peps + Kp)s + (pipaps + Kpz)
The sum of the closed-loop poles (p1+p2+p3) does not depend on K.



Root Locus

Ending Rule: Each root locus branch ends at an open-loop zero or oc.

As K, — oo, |H(s)| must approach 0 to satisfy the magnitude criterion
[KpH (s)] = 1.

If the number of open-loop zeros (n,) is greater than or equal to the
number of open-loop poles (n,), each branch of the root locus will end at
an open-loop zero.

If n, is less than ny, then n, —n, branches must go to infinity. As |s| — oo,
(s —21)(s —22)(s — 23) - (s — Zn.)

(s =p1)(s —p2)(s —p3) - (5 — pnyp)

will approach zero since the order of the denominator is greater than that
of the numerator.

H(s) =




Example: Root Locus Analysis

Root locus for the problem from the beginning of lecture.

1
H(s) = s(s+1)(s+5) Im(s)

—————— Re(s)

K, = 0: three real-valued poles (two dominant).
0<K,<1: real poles at s=0 and —1 move toward each other.
1<K,<32: complex poles — oscillations increase in freq and persistence.

K,>32: complex pole-pair goes unstable.



Example: Frequency Response Analysis

If 0<K,<1 there are two real-valued poles.
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Example: Frequency Response Analysis

If K;,>32 unstable.
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Example: Root Locus Analysis

Return to problem from beginning of lecture:

1
H(s) = s(s+1)(s+5) Im(s)

—————— Re(s)

K, = 0: three real-valued poles (two dominant).
0<K,<1: real poles at s=0 and —1 move toward each other.
1<K,<32: complex poles — oscillations increase in freq and persistence.

K,>32: complex pole-pair goes unstable.



Summary
Today we focused on the root-locus method to analyze and design con-
trollers.

This method builds on the frequency response method from last lecture.

Both methods are based on the observation that the poles of a closed-loop
system are at the frequencies sy where the open-loop system is —1.



