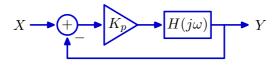
6.3100: Dynamic System Modeling and Control Design

CT Lead Compensation

see CT_Lead_Compensation_txt

Last Time: Stability from Open-Loop Frequency Response

If $K_pH(j\omega_0)=-1$ then the closed-loop system has a pole at $s=j\omega_0$.



From Black's equation,

$$G(j\omega_0) = \frac{Y}{X} = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}$$

If
$$K_pH(j\omega_0)=-1$$
, then $|G(j\omega_0)|\to\infty$

But G(s) can also be written as a ratio of first-order factors:

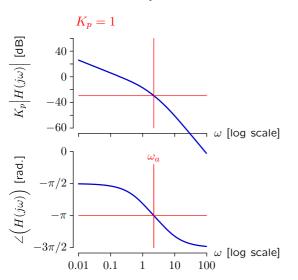
$$G(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots}{(s - p_1)(s - p_2)(s - p_3) \cdots}$$

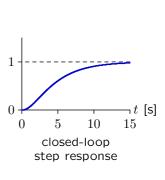
and if $G(j\omega_0) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system G(s) must have a pole at $s=j\omega_0$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

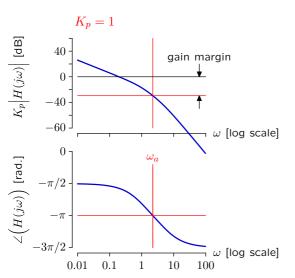
The magnitude of $K_pH(j\omega_a)$ is < 1, so the closed-loop system is stable.

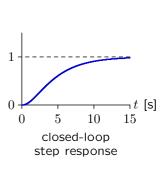




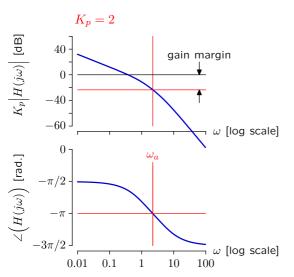
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

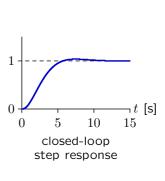
The gain margin is about 32 dB.



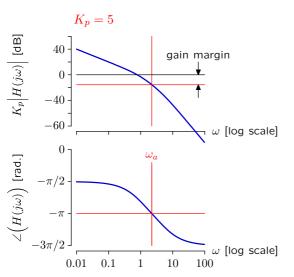


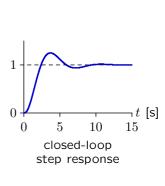
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.



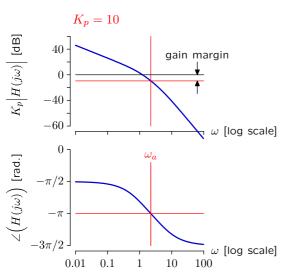


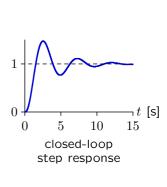
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.



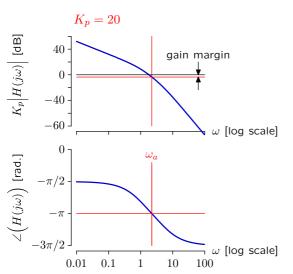


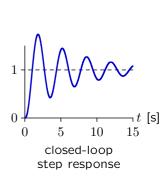
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.



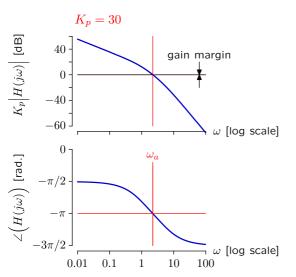


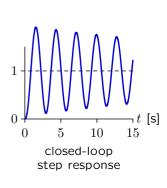
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.





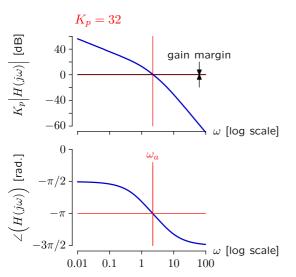
Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

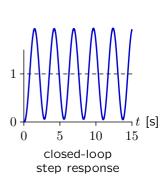




Let ω_a represent the frequency where $\angle(H(j\omega_a)$ is $-\pi$.

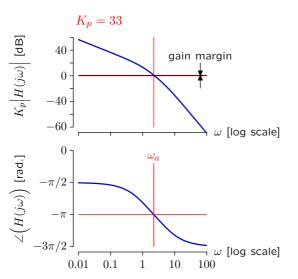
When gain margin $\rightarrow 0$, the closed-loop response no longer converges.

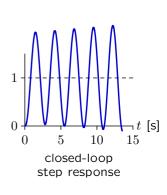




Let ω_a represent the frequency where $\angle(H(j\omega_a)$ is $-\pi$.

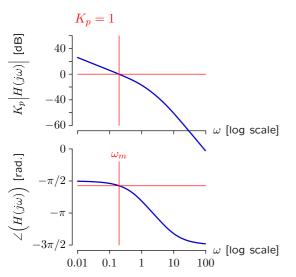
When the gain margin goes negative, the closed-loop system is unstable.

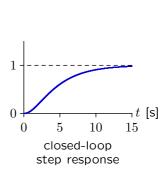




Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.

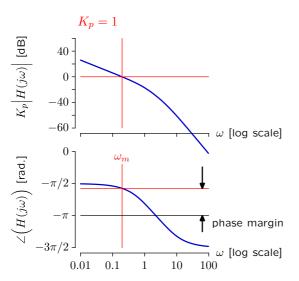
The angle of $H(j\omega_m)$ is greater than $-\pi$ so the closed-loop system is stable.

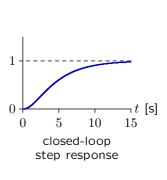




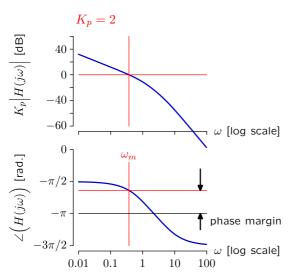
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.

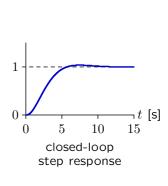
The phase margin is almost $\pi/2$.



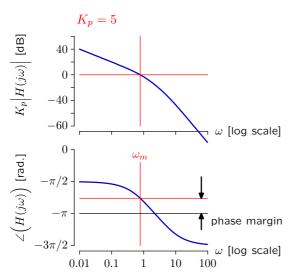


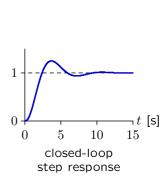
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.





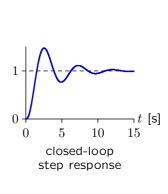
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.



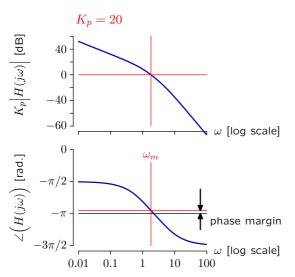


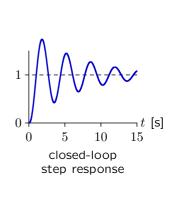
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.



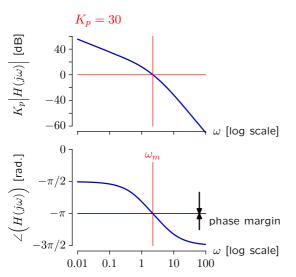


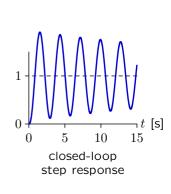
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.



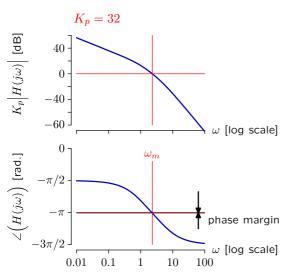


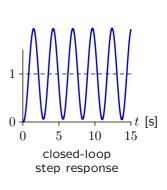
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.



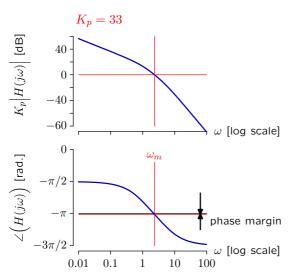


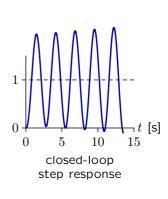
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$. When phase margin $\to 0$, the closed-loop response no longer converges.





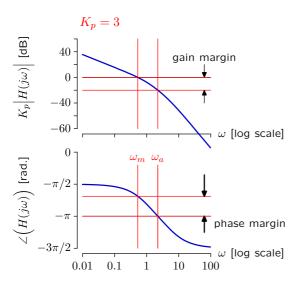
Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$. When phase margin goes negative, the closed-loop system is unstable.

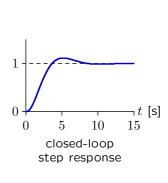




Two New Metrics: Gain Margin and Phase Margin

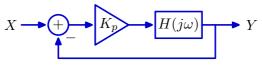
We would typically specify some minimum gain margin **and** some minimum phase margin.





From the Imaginary Axis ...

The closed-loop system will have a zero at $s=j\omega_0$ if $K_pH(j\omega_0)=-1$.



From Black's equation,

$$G(j\omega_0) = \frac{Y}{X} = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}$$

If
$$K_pH(j\omega_0)=-1$$
, then $|G(j\omega_0)|\to\infty$

But G(s) can also be written as a ratio of first-order factors:

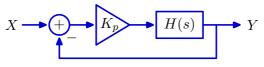
$$G(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots}{(s - p_1)(s - p_2)(s - p_3) \cdots}$$

and if $G(j\omega_0) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system G(s) must have a pole at $s=j\omega_0$.

... to the Entire Complex Plane

The closed-loop system will have a zero at $s=s_0$ if $K_pH(s_0)=-1$.



From Black's equation,

$$G(s_0) = \frac{Y}{X} = \frac{K_p H(s_0)}{1 + K_p H(s_0)}$$

If
$$K_pH(s_0)=-1$$
, then $|G(s_0)|\to\infty$

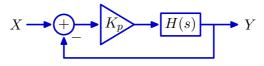
But G(s) can also be written as a ratio of first-order factors:

$$G(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots}{(s - p_1)(s - p_2)(s - p_3) \cdots}$$

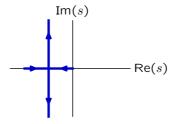
and if $G(s) \to \infty$ then s_0 is a root of the denominator.

The closed-loop system G(s) must have a pole at $s = s_0$. The collection of all such s_0 is called a **root locus**.

A **root locus** shows points in the s-plane that are poles of the closed loop system function G(s)=Y/X for values of $K_p>0$.

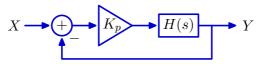


Example: Root locus for $H(s) = \frac{1}{s(s+1)}$

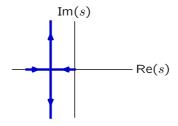


Given an expression for H(s), we can easily calculate the poles of the closed-loop system function G(s) numerically.

A **root locus** shows points in the s-plane that are poles of the closed loop system function G(s)=Y/X for values of $K_p>0$.



Example: Root locus for $H(s) = \frac{1}{s(s+1)}$

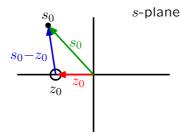


A more intuitive (and often more informative) method is to solve the stability criteria using vectors to represent the open-loop transfer function H(s).

Vector Analysis

The transfer function of a system composed of adders, gains, differentiators, and integrators can be determined from vectors associated with the system's poles/zeros.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$



Combine the vector representation with the stability criteria:

$$\left. \begin{array}{ll} \bullet & \left| K_p H(s_0) \right| = 1 \text{ and} \\ \bullet & \angle (K_p H(s_0) = -\pi \ (\pm k2\pi) \end{array} \right\} K_p H(s_0) = -1$$

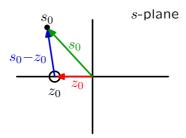
$$K_pH(s_0) = -$$

to find the root locus.

Vector Analysis

The **transfer function** of a system composed of adders, gains, differentiators, and integrators can be determined from **vectors** associated with the system's poles/zeros.

$$H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}$$



Combine the vector representation with the stability criteria:

•
$$\left|K_pH(s_0)\right|=1$$
 and
• $\angle(K_pH(s_0)=-\pi\ (\pm k2\pi)$ $\right\}K_pH(s_0)=-1$

Surprisingly, the **angle relation** is easiest to work with.

The shape of the root locus follows from a few simple rules.

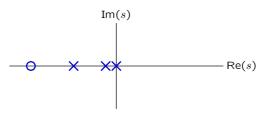
$$G(s) = \frac{K_p H(s)}{1 + K_p H(s)}$$

Starting Rule: Each root locus branch starts at an open-loop pole.

For $0 < K_p << 1$, the denominator of $G(s) \to 1$ and $G(s) \to K_p H(s)$

The closed-loop poles of ${\cal G}(s)$ are equal to the open-loop poles of ${\cal H}(s).$

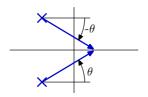
Example: The following plot shows open-loop poles/zeros of a plant H(s):



The associated root locus has 3 branches, one starting from each pole.

Real-Axis Rule: A point on the real axis is in the root locus if # of poles to the right of the point plus # of zeros to the right of the point is **odd**.

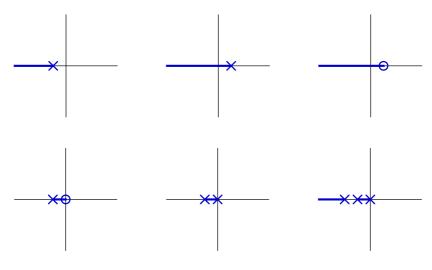
If a system contains just adders, gains, differentiators, and integrators, then poles (and zeros) with nonzero imaginary parts come in conjugate pairs, and do not contribute to the angle of H(s) if s is on the real axis.



A real-valued pole or zero contributes 0 or π to the angle of $H(s_0)$ depending on whether s_0 is to the right or left of the pole or zero.

Real-Axis Rule: A point on the real axis is in the root locus if # of poles to the right of the point plus # of zeros to the right of the point is **odd**.

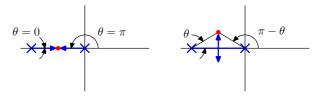
Examples:



Break-Away Rule: Increasing K_p after two real-valued closed-loop poles collide causes them to split off the real axis.

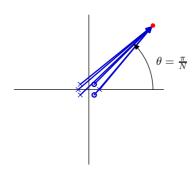
The left panel below shows two real-valued, closed-loop poles approaching each other. Notice that their angles sum to π prior to collision.

The right panel below shows that the angles still sum to $\boldsymbol{\pi}$ after the collision.

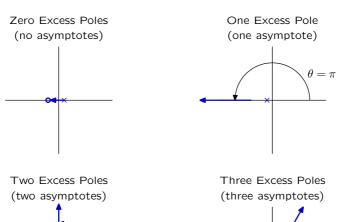


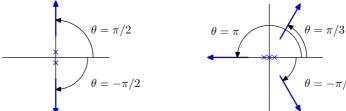
High-Gain Rule: If the # of poles exceeds the # of zeros by N>0, there will be N high-gain asymptotes with angles at odd multiples of π/N .

When |s| is large, vectors from the poles and zeros of H(s) to s will be approximately equal. Since the angle from a pole will be equal to the angle from a zero, the angles from pole/zero pairs will cancel, leaving a net number of excess poles (N) whose angles must sum to π .



High-Gain Rule: If the # of poles exceeds the # of zeros by N, there will be N high-gain asymptotes with angles at $(2n+1)\pi/N$.





Mean Rule: If # of poles is at least two greater than the # of zeros, then the average closed-loop pole position is independent of K_p .

Example:

$$H(s) = \frac{s+z}{(s+p_1)(s+p_2)(s+p_3)}$$

$$G(s) = \frac{\frac{s+z}{(s+p_1)(s+p_2)(s+p_3)}}{1 + \frac{K_p(s+z)}{(s+p_1)(s+p_2)(s+p_3)}}$$

$$= \frac{s+z}{(s+p_1)(s+p_2)(s+p_3) + K_p(s+z)}$$

$$= \frac{s+z}{s^3 + (p_1+p_2+p_3)s^2 + (p_1p_2+p_1p_3+p_2p_3)s + (p_1p_2p_3) + K_ps + K_pz}$$

$$= \frac{s+z}{s^3 + (p_1+p_2+p_3)s^2 + (p_1p_2+p_1p_3+p_2p_3 + K_p)s + (p_1p_2p_3 + K_pz)}$$

The sum of the closed-loop poles $(p_1+p_2+p_3)$ does not depend on K_p .

Ending Rule: Each root locus branch ends at an open-loop zero or ∞ .

As $K_p \to \infty$, |H(s)| must approach 0 to satisfy the magnitude criterion $|K_pH(s)|=1.$

If the number of open-loop zeros (n_z) is greater than or equal to the number of open-loop poles (n_p) , each branch of the root locus will end at an open-loop zero.

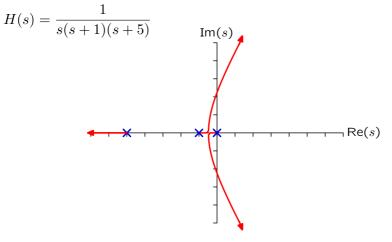
If n_z is less than n_p , then n_p-n_z branches must go to infinity. As $|s| \to \infty$,

$$H(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots (s - z_{n_z})}{(s - p_1)(s - p_2)(s - p_3) \cdots (s - p_{n_p})}$$

will approach zero since the order of the denominator is greater than that of the numerator.

Example: Root Locus Analysis

Root locus for the problem from the beginning of lecture.



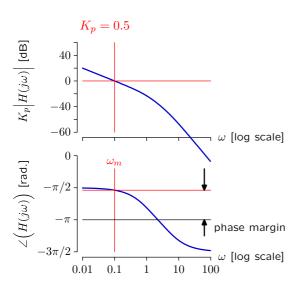
 $K_p = 0$: three real-valued poles (two dominant).

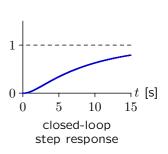
 $0 < K_p < 1$: real poles at s=0 and -1 move toward each other.

 $1{<}K_p{<}32$: complex poles \rightarrow oscillations increase in freq and persistence.

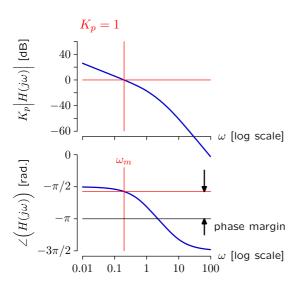
 $K_p{>}32$: complex pole-pair goes unstable.

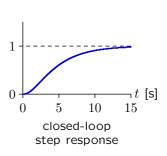
If $0 < K_p < 1$ there are two real-valued poles.

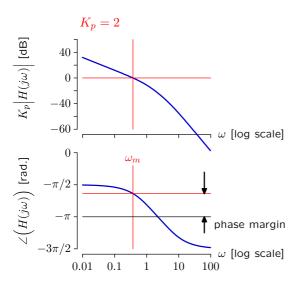


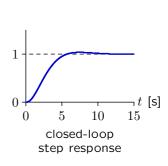


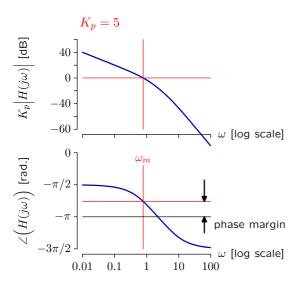
If $0 < K_p < 1$ there are two real-valued poles.

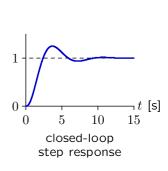


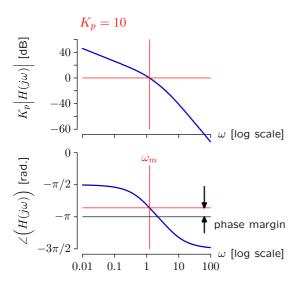


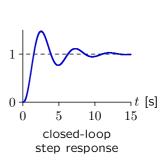


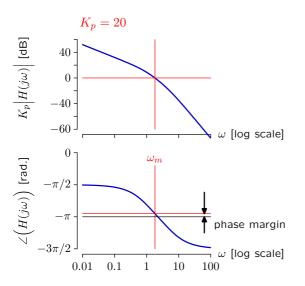


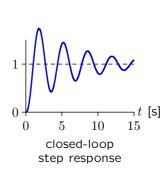


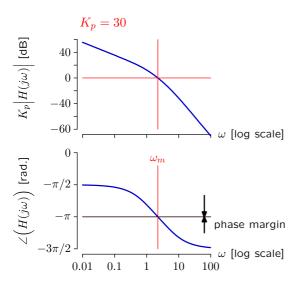


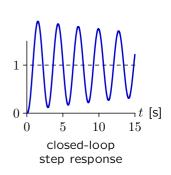




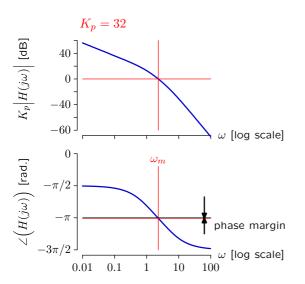


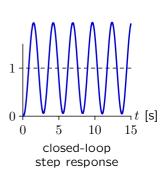




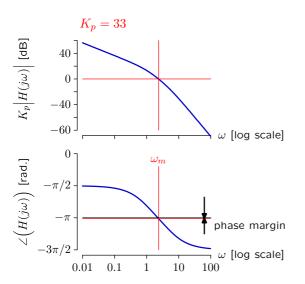


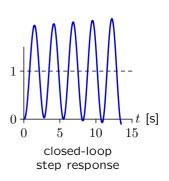
If $K_p=32$ persistent oscillation





If $K_p>32$ unstable.





Example: Root Locus Analysis

Return to problem from beginning of lecture:

$$H(s) = \frac{1}{s(s+1)(s+5)}$$

$$Im(s)$$

$$Re(s)$$

 $K_p = 0$: three real-valued poles (two dominant).

 $0 < K_p < 1$: real poles at s=0 and -1 move toward each other.

 $1{<}K_p{<}32{:}$ complex poles \rightarrow oscillations increase in freq and persistence.

 $K_p{>}32$: complex pole-pair goes unstable.

Summary

Today we focused on the root-locus method to analyze and design controllers.

This method builds on the frequency response method from last lecture.

Both methods are based on the observation that the poles of a closed-loop system are at the frequencies s_0 where the open-loop system is -1.