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Retrospective

To date, we have used a number of di↵erent representations

• di↵erential and di↵erence equations

• block diagrams

• system (transfer) functions

• poles and zeros

to get a variety of perspectives on the control of systems.

These are most useful when you can readily translate between them.



System Functions, Poles, and Natural Frequencies

If a system contains only adders, gains, di↵erentiators, and integrators,

then its system function can be written as a rational polynomial in s:

H(s) = b0 + b1s + b2s
2 + b3s

3 + · · ·
a0 + a1s + a2s2 + a3s3 + · · ·

The numerator and denominator polynomials can be factored into products

of terms: one for each zero in the numerator or pole in the denominator:

H(s) = K
(s ≠ z0)(s ≠ z1)(s ≠ z2) · · ·
(s ≠ p0)(s ≠ p1)(s ≠ p2) · · ·

Contributions of each pole can be isolated by expanding the system func-

tion in partial fractions:

H(s) = c0
s ≠ p0

+ c1
s ≠ p1

+ c2
s ≠ p2

+ · · ·

Each partial fraction term corresponds to a first-order subsystem:

Hi(s) = Yi(s)
Xi(s) = ci

s ≠ pi

with a natural frequency equal to the corresponding pole pi.



Check Yourself

Step responses of four systems that contain only adders, gains, dif-

ferentiators, and integrators are shown below.
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Which if any of the systems could have just one pole?

Which must have > 1 but no more than 2 poles (both real)?



Check Yourself

Only the first step response (s1(t)) has an exponential shape that corre-

sponds to a single pole.
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Check Yourself

Only the first step response (s1(t)) has an exponential shape that corre-

sponds to a single pole.
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Which must have > 1 but no more than 2 poles (both real)?



Sums of Exponentials

Although the third step response (s3(t)) “overshoots” its final value, it is

actually the sum of two exponentials.
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The faster pole contributes significantly to the fast initial rise of the step

response and the slower pole contributes to the subsequent decline.



Sums of Exponentials

The second step response (s2(t)) is also the sum of two exponentials.

t

0 1 2 3
0

1

The two components have equal and opposite initial slopes, so the initial

slope of the step response is zero – unlike the exponential response of s1(t).
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The red component dominates the final value.



Complex Exponentials

Only the fourth step response (s4(t)) is oscillatory in the sense that the

oscillations would persist forever if there were no damping in the system.
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If the system has just two poles, they must have non-zero imaginary parts.



Check Yourself

Match the step responses to their system functions below.
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Hc(s) = 3
s + 3

Which map shows the correct correspondence?

s1 s3 s4

Ha Hb Hc
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Ha Hb Hc
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Ha Hb Hc
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Map 1 Map 2 Map 3 Map 4 Map 5 Map 6



Complex-Valued Roots

Poles can have non-zero imaginary components (e.g., Hb(s), previous slide).

Hb(s) = s + 10
s2 + 2s + 10 = s + 10

(s + 1 + j3)(s + 1 ≠ j3)
p = ≠1 ± j3

Each pole is associated with a complex-valued eigenfunction: e
(≠1±j3)t

but the step response of this system must have no imaginary part.

How is the step response real-valued when the poles have imaginary parts?



Complex-Valued Roots

The numerator and denominator polynomials of the system functions of

systems the contain just adders, gains, di↵erentiators, and integrators have

real-valued coe�cients.

If p is a root of a polynomial with constant real-valued coe�cients, then

its complex conjugate p
ú is also a root.

Let D(s) represent a polynomial in s with constant, real-valued coe�cients.

If p is a root of D(s) then D(p) = 0.1
Since all of the coe�cients of D(p) are real-valued,

D(pú) = (D(p))ú = 0ú = 0 .

Thus p
ú is also a root.

That’s the definition of a root.1



Complex Roots

If we pair the factors corresponding to complex-conjugate roots, the re-

sulting polynomial has real-valued coe�cients.

Let p = ‡+jÊ0. Then p
ú = ‡≠jÊ0.

(s ≠ p)(s ≠ p
ú) = s

2 ≠ 2 Re (p) s + |p|2

Both the real part of p and the squared magnitude of p are real-valued.

Therefore the product of these factors has real-valued coe�cients.



Natural Frequencies

Eigenfunctions of a system with a single complex pole are complex valued.
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Responses of a system with complex poles in conjugate pairs are real-valued.



Comparison to DT

While the step response of a second order DT system with real-valued poles

is a sum of geometrics, it may “overshoot” the final value.
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As in CT, this overshoot should not be confused with oscillations that occur

with complex valued poles.



Complex Poles

What if a pole has a non-zero imaginary part?

Example:

Y

X
= 1

1 ≠ R + R2 = 1
1 ≠ 1

z + 1
z2

= z
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z2 ≠ z + 1

The poles are at z = 1
2 ± j
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2 , corresponding eigenfunctions are (1
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Ô
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2 )n.

Powers of complex numbers are easy to compute using polar forms.

Express the pole at z = a + jb as re
j◊ where r

2 = a
2 + b

2 and tan ◊ = b
a .

Then the eigenfunction is
!
re

j◊
"n = r

n
e

j◊n:

• geometric growth of magnitude

• linear growth of angle



Complex Pole Example

Consider a complex pole at re
j◊ where r = 0.98 and ◊ = 0.2.

The n
th sample of the corresponding eigenfunction is (re

j◊)n = r
n
e

j◊n.

Re

Im

0.98 3 · e
j 0.2· 3



Complex Roots

If p is a root of a polynomial with constant real-valued coe�cients, then

its complex-conjugate p
ú is also a root.

Let D(z) represent a polynomial in z with constant real-valued coe�cients.

If p is a root of D(z) then D(p) = 0.
Since all of the coe�cients are real-valued,

D(pú) = (D(p))ú = 0ú = 0.

Thus p
ú is also a root.



Complex Conjugates

The sum of the eigenfunctions associated with complex conjugates is real.

(re
j◊)n + (re

≠j◊)n = r
n2 cos ◊n

Example: r = 0.98, ◊ = 0.2
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Check Yourself

Output of a system with poles at z = re
±j�.

y[n]

n

Which statement is true?

1. r < 0.5 and � ¥ 0.5
2. 0.5 < r < 1 and � ¥ 0.5
3. r < 0.5 and � ¥ 0.08
4. 0.5 < r < 1 and � ¥ 0.08
5. none of the above



Block Diagrams

Except for 1 error, these 3 block diagrams represent the same H(s):
H(s) = 6s + 2

s2 + 3s + 2
d
dt 6
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What is the error?



Summary

Today we developed relations between a number of di↵erent representations

os systems:

• di↵erential and di↵erence equations

• block diagrams

• system (transfer) functions

• poles and zeros

Next time we will add frequency responses to this list.


