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Modeling Systems with Di↵erence Equations

Over the past several weeks, we have seen many examples of how di↵erence

equations can be used to describe and improve the behaviors of systems.

Example: robotic steering

◊

V

d

d[n] = d[n≠1] + V �T◊[n≠1]
◊[n] = ◊[n≠1] + �TÊ[n≠1]
Ê[n] = “u[n]
u[n≠1] = Kp(dd[n≠1] ≠ d[n≠1])

Simple (but somewhat tedious) math yields a di↵erence equation that re-

lates the input dd[ · ] and output d[ · ]:

d[n] = 2d[n≠1] ≠ d[n≠2] + (�T )2V Kp“
1

dd[n≠2] ≠ d[n≠2]
2

which can then be analyzed to gain insight into behaviors of the system.



Insights from Di↵erence Equations

The di↵erence equation can be used to find a system’s response to any

arbitrary input dd[n].

Start from an initial condition, e.g.,

d[n] = 0 for n < 0
Then step through n, using the di↵erence equation

d[n] = 2d[n≠1] ≠ d[n≠2] + (�T )2V Kp“
1

dd[n≠2] ≠ d[n≠2]
2

to calculate successive values of d[n] from the input dd[ · ] and previous

values of the output (d[n≠1] and d[n≠2]).

æ useful for characterizing responses to a specified input signal dd[n], e.g.,
the step response.



Insights from Di↵erence Equations

The di↵erence equation can also be used to find the natural frequencies

of a system.

Find the value or values of ⁄ for which d[n] = ⁄n is a solution to the

di↵erence equation when dd[n] = 0 (i.e., the homogeneous case).

d[n] = 2d[n≠1] ≠ d[n≠2] + (�T )2V Kp“
1

dd[n≠2] ≠ d[n≠2]
2

⁄n
≠ 2⁄n≠1 + (1+(�T )2V Kp“)⁄n≠2 = 0

⁄2
≠ 2⁄ + 1+(�T )2V Kp“ = 0

⁄ = 1 ± j�T


V Kp“

æ useful for characterizing performance metrics (stability, convergence,

etc.) of a system without having to specify the signals that excite them.



Modeling Systems with Di↵erence Equations

Di↵erence eqn’s provide two di↵erent but closely related views of a system.

Time domain: step-by-step calculation of samples:

d[n] = 2d[n≠1] ≠ d[n≠2] + (�T )2V Kp“
1

dd[n≠2] ≠ d[n≠2]
2

Frequency domain: constraints on the structure of the output signal:

⁄n = 2⁄n≠1
≠ ⁄n≠2

≠ (�T )2V Kp“⁄n≠2

While there are considerable di↵erences between these views, their under-

lying structures are surprisingly similar. And the similarities are even more

striking when expressed as block diagrams.
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+ µ + delay delay

2

≠1

+
≠

d[n] d[n≠1]
d[n≠2]dd[n≠2]

Frequency domain: constraints on the structure of the output signal:

⁄n = 2⁄n≠1
≠ ⁄n≠2

≠ (�T )2V Kp“⁄n≠2

+ µ + delay delay

2

≠1

+
≠

⁄n ⁄n≠1
⁄n≠20

Same structures – only the labels are di↵erent.



Time and Frequency Domain Methods

We can exploit relations between time and frequency domain formulations

to simplify our work and deepen our understanding of control systems.

We begin by casting the two formulations into a common framework.



Polynomial (Functional) Representations

The function of the delay box is clear for the time-domain representation.

d[n] = 2d[n≠1] ≠ d[n≠2] + (�T )2V Kp“
1

dd[n≠2] ≠ d[n≠2]
2

+ µ + delay delay

2

≠1

+
≠

d[n] d[n≠1]
d[n≠2]dd[n≠2]

The function of the delay box is a bit di↵erent in the frequency domain.

⁄n = 2⁄n≠1
≠ ⁄n≠2

≠ (�T )2V Kp“⁄n≠2

+ µ +

2

≠1

+

⁄≠1 ⁄≠1
≠

⁄n ⁄n≠1
⁄n≠20

Delaying ⁄n by one sample in time is equivalent to multiplying the entire

signal by a constant (⁄≠1). Geometric signals are eigenfunctions.



Polynomial (Functional) Representations

Let R represent a generic operator that can represent delay in the time

domain or multiplication by inverse frequency in the frequency domain.

+ µ +

2

≠1

+

R R

≠
DDd

We can think of R as an operator. If X represents a signal x[n], then RX
represents a right-shifted version of X.



Operator Notation: Check Yourself

RX Y = RX

Let Y = RX. Which of the following is/are true:

1. y[n] = x[n] for all n

2. y[n] = x[n≠1] for all n

3. y[n] = x[n+1] for all n

4. y[n≠1] = x[n] for all n

5. none of the above



Polynomial (Functional) Representations

Instead of di↵erence equations to specify relations among samples, we

use polynomials in R to specify relations among entire signals.

≠1R

+

≠1R

+x[n]
y1[n]

y2[n]

Relations between samples.

y2[n] = y1[n]≠y1[n≠1]
= (x[n]≠x[n≠1]) ≠ (x[n≠1]≠x[n≠2])
= x[n] ≠ 2x[n≠1] + x[n≠2]

Relations between signals.

Y2 = (1≠R){Y1} = (1≠R){(1≠R){X}} = (1≠R)(1≠R) X

= (1≠R)2X

= (1≠2R+R
2) X

Notice that the R representation obeys familiar properties of polynomials.



Check Yourself

Operator expressions obey many of the algebraic rules of polynomials.

The following systems are described by the same di↵erence equation:

y[n] = x[n≠1] ≠ x[n≠2]

R≠1

+ RX Y

R

R R≠1

+X Y

Their operator expressions are related by what math property?

1. commutativity 2. associativity

3. distributivity 4. transitivity

5. none of the above



Operator Algebra

Similarly, operator expressions obey the commutativity principle:

R(1 ≠ R) X = (1 ≠ R)RX

R

+ RX Y

≠1

R

+RX Y

≠1

These systems are equivalent in the sense that they are described by the

same di↵erence equation:

y[n] = x[n≠1] ≠ x[n≠2]



Operator Algebra

The associative property similarly holds for operator expressions.

(2+R)R(1+R) = (2+R)
1

R(1+R)
2

=
1

(2+R)R
2

(1+R)

Corresponding block diagrams:

+ +2

R

R

R

+ +2

R
2

R

R

+ +2

R

R

R
2



Using Operators to Analyze Systems

The polynomial representation retains the structure of the underlying dif-

ference equations, and allows us to manipulate and simplify di↵erence equa-

tions using polynomial mathematics.

æ polynomials are generally easier to work with than di↵erence equations

æ polynomials provide insights not apparent from di↵erence equations

Next: using operators to analyze systems.



Feedforward and Feedback Pathways

A cyclic pathway is one that closes a loop on itself.

+

R

≠
X Y

acyclic

+

R

X Y

cyclic

+

R

≠
X Y +

R

X Y

Feedforward systems contain no cyclic pathways. Their responses consist

of a sum of components: each characterized by an aggregate gain and

delay.

Feedback systems contain one or more cyclic pathways. Their responses

can persist long after the input ends, as signals propagate through internal

loops.



Check Yourself

How many of the following systems have cyclic signal paths?

R

R+ +X Y + +

R R

X Y

R

+ +X Y + +

R R

X Y



Using Operators to Analyze Feedforward Systems

Feedforward systems that are constructed of adders, gains, and delays can

be represented by a polynomial in R.

Example:

+

R

+RX Y = (R + R + R
2)X

There are 3 pathways through this system: two have a single delay, and

one has two delays.

Feedforward systems are characterized by a functional F(R) that operates

on the input to produce the output:

Y = F(R)X
where

F(R) = R + R + R
2

There is an explicit dependence of Y on X.



Check Yourself

How many of the following systems are equivalent to

Y = (4R
2 + 4R + 1) X ?

Delay 2 + Delay 2 +X Y

Delay + Delay 4 +X Y

Delay 4 +
Delay

+X Y



Using Operators to Analyze Feedback Systems

Simple feedback systems can contain both a forward path F(R) and a

feedback path G(R).

+ F(R)

G(R)

X Y
E

Y = F(R)E = F(R)
1

X + G(R)Y
2

= F(R)X + F(R)G(R)Y
1

1≠F(R)G(R)
2

Y = F(R)X

Feedback imposes an implicit relation between X and Y .

The output Y is the signal that produces F(R) when operated on by (1 ≠

F(R)G(R)).



Transient and Persistent Responses

The following system is feedforward. It has no cyclic signal-flow pathways.

Consider its response to a “unit-sample signal” ”[n].

R

+

≠p0

X1 Y1

≠1 0 1 2 3 4
n

x1[n] = ”[n]

≠1 0 1 2 3 4
n

y1[n] = x1[n] ≠ p0 x1[n≠1]

The duration of its response to a unit-sample signal is limited by the highest

order term in its operator representation:

F(R) = 1 ≠ p0R



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.



Transient and Persistent Responses

Systems with feedback can have persistent responses to transient inputs.

The following system has a cyclic signal-flow pathway.

Consider its response to a “unit-sample signal” ”[n].

R

+

p0

X2 Y2

≠1 0 1 2 3 4
n

x2[n] = ”[n]

≠1 0 1 2 3 4
n

y2[n] = x2[n] + p0 y2[n≠1]

Each cycle creates another sample in the output.

The output Y2 persists forever even though the input x2[n] = 0 for n > 0.
We say that this system has a natural frequency p0.



Transient and Persistent Responses

Compare operator descriptions of these feedback and feedforward systems:

R

+

≠p0

X1 Y1

R

+

p0

X2 Y2

Y1 = (1 ≠ p0R)X1 (1 ≠ p0R)Y2 = X2



Transient and Persistent Responses

Compare operator descriptions of these feedback and feedforward systems:

R

+

≠p0

X1 Y1

R

+

p0

X2 Y2

Y1 = (1 ≠ p0R)X1 (1 ≠ p0R)Y2 = X2

Y2 = (1 + p0R + p2
0R

2 + p3
0R

3 + · · ·)X2



Transient and Persistent Responses

Compare operator descriptions of these feedback and feedforward systems:

R

+

≠p0

X1 Y1

R

+

p0

X2 Y2

Y1 = (1 ≠ p0R)X1 (1 ≠ p0R)Y2 = X2

Y2 = (1 + p0R + p2
0R

2 + p3
0R

3 + · · ·)X2

Substitute X2 from the first equation into the second:

Y2 = (1 + p0R + p2
0R

2 + p3
0R

3 + · · ·)(1 ≠ p0R)Y2

and therefore

(1 + p0R + p2
0R

2 + p3
0R

3 + · · ·)(1 ≠ p0R) = 1
The two factors 1+p0R+p2

0R
2+p3

0R
3+· · · and 1≠p0R must be reciprocals.

We can think of the operator representation of this feedback system as

H(R) = 1
1 ≠ p0R

= 1 + p0R + p2
0R

2 + p3
0R

3 + p4
0R

4 + · · ·



Polynomial Interpretation of Reciprocals

The reciprocal relation between the two representations

H(R) = 1
1 ≠ p0R

= 1 + p0R + p2
0R

2 + p3
0R

3 + p4
0R

4 + · · ·

also follows from polynomial division.

1 +p0R +p2
0R

2 +p3
0R

3 + · · ·

1 ≠ p0R 1
1 ≠p0R

p0R

p0R ≠p2
0R

2

p2
0R

2

p2
0R

2
≠p3

0R
3

p3
0R

3

p3
0R

3
≠p4

0R
4

· · ·

This is another instance of how the normal rules of polynomial algebra

apply to system operators.



Summary

Today we introduced polynomial (aka operator) representations of discrete

time systems.

æ polynomials are generally easier to work with than di↵erence equations

æ polynomials provide insights not apparent from di↵erence equations

Next time: Geometric Signals and System Functions


