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Prop. Control for First Order DT Systems

Lab Announcement

We hope that everyone enjoyed Lab 1!

We apologize that it was a bit too long.

Didn’t finish the checkoffs? Don’t worry

If you did not finish Checkoff 1: office hours this evening and
Wednesday evening
If you did not finish Checkoff 2: office hours, or, you can get the
checkoff in this week’s lab sessions

Reminder: please attend your assigned lab section.

6.310 Sept. 9, 2024 3 / 20



Prop. Control for First Order DT Systems

Recap: Our First System

Physical systems operate in continuous time (CT). For example,
suppose we want to operate a system at a desired temperature. We can
then measure the actual temperature.

Td(t): desired
temperature

Tm(t): measured
temperature
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Prop. Control for First Order DT Systems

Recap: From Continuous to Discrete Time

Systems controlled by microcontrollers operate at a fixed rate, i.e., in
discrete time (DT).
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Prop. Control for First Order DT Systems

Recap: Closed Loop Feedback System

Td[n]
Controller Plant

Tm[n]e[n] u[n]

−

System

Recall our definition of a simple first order DT system and the
proportional controller:

Prop. controller: u[n] = Kp(Td[n]− Tm[n]),

Plant:
Tm[n]− Tm[n− 1]

∆T
= γu[n− 1].
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Prop. Control for First Order DT Systems

Proportional Control for First-Order DT System

From our proportional controller,

Prop. controller: u[n] = Kp(Td[n]− Tm[n]), (1)

Plant:
Tm[n]− Tm[n− 1]

∆T
= γu[n− 1], (2)

we can substitute (1) into (2) to obtain:

Tm[n]− Tm[n− 1]

∆T
= γKp(Td[n− 1]− Tm[n− 1]).
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Prop. Control for First Order DT Systems

Proportional Control for First-Order DT System

From before,

Tm[n]− Tm[n− 1]

∆T
= γKp(Td[n− 1]− Tm[n− 1]).

Simplifying this equation and collecting terms, we obtain:

Tm[n] = (1− γ∆TKp)Tm[n− 1] + γ∆TKpTd[n− 1].

This equation has the form of a first-order DT system:

y[n] = λy[n− 1] + bx[n− 1] (#1)
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Prop. Control for First Order DT Systems

General Form of First Order System

The general form of a first order DT system:

y[n] = λy[n− 1] + bx[n− 1] (#1)

Notes on the general form:

Our goal is to solve for y[n]

x[n] is the input or driving function we set

λ is the natural frequency

b is a multiplicative constant
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Solutions to First Order DT Systems

Case 1: Zero-Input Response (ZIR)

First, we can study the very simple case when x[n] = 0 for all n. The
equation simplifies to,

y[n] = λy[n− 1].

The solution is given by:

y[n] = λny[0]

The steady state solution depends on the value of λ:

If |λ| < 1, then limn→∞ y[n] = y[∞] = 0.

If λ = 1, then y[∞] = y[0].

If λ = −1, then y[n] = (−1)ny[0]. The solutions does not converge.

If |λ| > 1, then |y[∞]| → ∞. The solution does not converge.
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Solutions to First Order DT Systems

Case 2: Zero-State Response (ZSR)

Next, we can study the case when x[n] = 1 for all n and y[0] = 0.
In this case, equation (# 1) becomes,

y[n] = λy[n− 1] + b.

First, assuming that the solution converges, let y[∞] = limn→∞ y[n].

y[∞] = λy[∞] + b,

y[∞] =
b

1− λ
.
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Solutions to First Order DT Systems

ZSR of First-Order DT System: Finding y[n]

y[n] = λy[n− 1] + b, y[∞] =
b

1− λ
We can find y[n] iteratively, as:

y[0] = 0, (3)

y[1] = λy[0] + b = b, (4)

y[2] = λy[1] + b = λb+ b, (5)

y[3] = λy[2] + b = λ2b+ λb+ b. (6)

Following this pattern, we get:

y[n] =
n−1∑
m=0

λmb, y[∞] =
∞∑
m=0

λmb.
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Solutions to First Order DT Systems

ZSR of First-Order DT System: Finding y[n]

y[n] =

n−1∑
m=0

λmb, y[∞] =

∞∑
m=0

λmb.

With the above we can now find y[n]:

y[n] = y[∞]−
∞∑
m=n

λmb = y[∞]− λn
∞∑
m=0

λmb

= y[∞]− λny[∞] = y[∞](1− λn)

Thus, y[n] = b
1−λ(1− λn).
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Solutions to First Order DT Systems

Check Yourself: Steady-State Solutions for ZSR of
First-Order DT System

Our Zero-State Response output is defined as,

y[n] =
b

1− λ
(1− λn)

Assume that b = 1. Determine if the steady state solution converges of
diverges for the six different scenarios of λ:

λ > 1.

λ < −1.

λ = −1.

λ = 1.

0 < λ < 1.

−1 < λ < 0.
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Solutions to First Order DT Systems

Check Yourself: Steady-State Solutions for ZSR of
First-Order DT System

Our Zero-State Response output is defined as,

y[n] =
b

1− λ
(1− λn)

Assume that b = 1. Determine if the steady state solution converges of
diverges for the six different scenarios of λ:

λ > 1. Solution diverges.

λ < −1. Solution diverges.

λ = −1. Solution diverges.

λ = 1. Solution diverges.

0 < λ < 1. Solution converges.

−1 < λ < 0. Solution converges.
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Solutions to First Order DT Systems

Effect of λ on Steady State
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Choosing Kp for First Order DT Systems

Returning to Our Original System

Recall our original system equation:

Tm[n] = (1− γ∆TKp)Tm[n− 1] + γ∆TKpTd[n− 1].

Assume the desired temperature is constant. Comparing with (#1),

y[n] = λy[n− 1] + bx[n− 1],

we can see that,

λ = 1− γ∆TKp, b = γ∆TKpTd[n].

Let’s consider the stability, steady-state error, and convergence rate.
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Choosing Kp for First Order DT Systems

Stability

Tm[n] = (1− γ∆TKp)︸ ︷︷ ︸
λ

Tm[n− 1] + γ∆TKpTd[n− 1]︸ ︷︷ ︸
b

.

Recall that for stability, we must have −1 < λ < 1. Therefore,

−1 < λ < 1,

−1 < 1− γ∆TKp < 1,

2

γ∆T
> Kp > 0.

Kp must be chosen in this range to guarantee Tm[∞] converges to a
finite number.
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Choosing Kp for First Order DT Systems

Steady-State Error

We can evaluate the steady-state solution,

y[∞] =
b

1− λ
,

to find that,

Tm[∞] =
γ∆TKpTd[∞]

1− (1− γ∆TKp)
= Td[∞].

In this particular problem, Tm[∞] = Td[∞]. As long as we operate in a
stable regime, there is no steady-state error. (Not true in general!)
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Choosing Kp for First Order DT Systems

Convergence Rate

Thus far, we have found a valid range of Kp ∈ (0, 2
γ∆T ). What is the

optimal Kp? Recall (#1), what if we set λ = 0?

λ = 1− γ∆TKp = 0⇒ γ∆TKp = 1.

y[n] =
b

1− λ
(1− λn) = b = Td[n]⇒ Tm[n] = Td[n].

A nice result! The temperature approaches the desired value in 1 step.

However, is this a realistic controller?
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