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Discrete Time or Continuous Time?

Like many modern control systems, our propeller arm system combines

parts that are most naturally described in continuous time (plant and sen-

sor) with a controller that is unequivocally discrete time.
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Two Descriptions

We modeled the propeller arm system in discrete time.
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Alternatively, we could have modeled it in continuous time instead.
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The former provides a more literal description of what the controller does.

The latter is a more literal description of what the plant and sensor do.
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Alternatively, we could have modeled it in continuous time instead.
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The former is readily analyzed using a step-by-step numerical method.

The latter provides new insights based on responses to sinusoidal inputs.

This week: New insights from continuous-time representations.



Di↵erence Equations and Di↵erential Equations

Discrete-time systems are readily described with di↵erence equations.

Example:

yd[n] = xd[n] + pyd[n≠1]

Continuous-time systems are readily described with di↵erential equations.

Example:

dyc(t)
dt

= xc(t) + pyc(t)



Check Yourself

The following di↵erence equation

yd[n] = xd[n] + pyd[n≠1]
is best represented by which of the following block diagrams?
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Discrete-Time and Continuous-Time Systems

Discrete-time systems and continuous-time systems can be analyzed with

similar but not identical methods.

Discrete-Time Example:

yd[n] = xd[n] + pyd[n≠1]

+

delayp

xd[n] yd[n]

Continuous-Time Example:

dyc(t)
dt

= xc(t) + pyc(t)

+
s

p

xc(t) yc(t)



Discrete-Time Eigenfunctions

When the inputs to discrete-time adders, gains, and delays are proportional

to z
n, their outputs are also proportional to z

n.
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The eigenfunctions of discrete-time systems are complex geometrics.



Continuous-Time Eigenfunctions

When the inputs to continuous-time adders, gains, integrators, and di↵er-

entiators are proportional to e
st, their outputs are proportional to e

st.
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The eigenfunctions of continuous-time systems are complex exponentials.



Check Yourself

Determine the natural frequencies of these systems.

yd[n] = xd[n] + pyd[n≠1]
dyc(t)

dt
= xc(t) + pyc(t)

Which of the following statements about the natural frequencies

of these systems are true?

1. The natural freq’s are the same b/c eigenfunctions are the same.

2. The natural freq’s are the same b/c block diagrams are the same.

3. Di↵erent b/c first depends on n and second depends on t.

4. Both natural frequencies are equal to p.

5. None of the above



Functional Characterization of DT Systems

DT systems are stable (i.e., their zero-input responses converge to zero)

when their natural frequencies are inside the unit circle.
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Responses of DT systems are

• oscillatory when 0 < abs(\(⁄)) < fi,

• monotonic when \(⁄) = 0, and

• alternating when \(⁄) = fi.



Functional Characterization of CT Systems

CT systems are stable (i.e., their zero-input responses converge to zero)

when their natural frequencies are in the left half-plane.

lim
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Responses of CT systems are

• stable when Re (s) < 0.
• oscillatory when Im (s) ”= 0.
• eternal sinusoids when Re (s) = 0.



Check Yourself

The following plots show regions of the s-plane or z-plane in red.
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For which frequencies z are DT systems stable with ringing?

For which frequencies s are CT systems stable with ringing?



Black’s Equation

Black’s equation for CT systems is similar to that for DT systems.

+ F (s)

G(s)

X Y
E

Y = F (s)E = F (s)
1

X + G(s)Y
2

= F (s)X + F (s)G(s)Y
1

1≠F (s)G(s)
2

Y = F (s)X
The transformation from X to Y is given by following:

H(s) = Y

X
= F (s)

1 ≠ F (s)G(s)

which is known as Black’s equation.



Modularity

Feed-forward systems that contain only adders, gains, di↵erentiators, and

integrators can be represented as a rational polynomial of the following

form:

H(s) = b0 + b1s + b2s
2 + b3s

3 + · · ·
a0 + a1s + a2s2 + a3s3 + · · ·

If both the forward and feedback paths through a system with feedback

can be represented as rational polynomials in s, then the system function

can be expressed as a rational polynomial of the same form:

H(s) = b0 + b1s + b2s
2 + b3s

3 + · · ·
a0 + a1s + a2s2 + a3s3 + · · ·



Modularity

If the forward path through a feedback system contains feedback, then the

forward path can be represented by a rational polynomial N1(s)/D1(s).
If the feedback path through a feedback system contains feedback, then

the feedback path can be represented by a rational polynomial N2(s)/D2(s).

+ N1(s)
D1(s)

N2(s)
D2(s)

X Y

We can apply Black’s formula to find the resulting system function:

Y

X
=

N1(s)
D1(s)

1 ≠ N1(s)
D1(s)

N2(s)
D2(s)

= N1(s)D2(s)
D1(s)D2(s) ≠ N1(s)N2(s)

Since the product of polynomials is polynomial, it follows that the overall

system function is a rational polynomial.



Partial Fractions

The natural frequencies of a system can be identified by expanding the

system function H in partial fractions.

H = Y

X
= b0 + b1s + b2s

2 + b3s
3 + · · ·

1 + a1s + a2s2 + a3s3 + · · ·

Factor denominator:

H = Y

X
= b0 + b1s + b2s

2 + b3s
3 + · · ·

(s ≠ p0)(s ≠ p1)(s ≠ p2)(s ≠ p3) · · ·

We call the roots of the denominator the poles of the system.

Partial fractions:

H = Y

X
= C0

s ≠ p0
+ C1

s ≠ p1
+ C2

s ≠ p2
+ · · · + D0 + D1s + D2s

2 + · · ·

One natural frequency arises from each factor of the denominator.



Check Yourself

Consider the system described by

d
2
y(t)

dt2 + 3dy(t)
dt

+ 2y(t) = x(t)

How many of the following are true?

1. If x(t) = 0 then lim
tæŒ

y(t) = 0.
2. There are two poles.

3. There are poles at s = 1 and s = 2.
4. The step response of this system is oscillatory.

5. None of the above



Motor Model

The instant model of the motor in “Code of Arms” has the following form

“ac(t) –a(t)

and the non-instant model has the following form.

q“a +
s

—

c(t) –a(t)

In both models, the motor takes an input command c(t) and generates

angular acceleration –a(t) of the arm.
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and the non-instant model has the following form.

q“a +
s

—
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In both models, the motor takes an input command c(t) and generates

angular acceleration –a(t) of the arm.

Find q so that the steady-state output –a(Œ) is the same for both models

when the input c(t) is a constant c0.



Motor Model

The instant model of the motor in “Code of Arms” has the following form

“ac(t) –a(t)

and the non-instant model has the following form.

q“a +
s

—

c(t) –a(t)

If the output is constant, then the input to the integrator must be zero.

If the input to the integrator is zero, then the two inputs to the adder must

sum to zero:

—–a(Œ) + q“ac0 = 0
But “ac0 = –a(Œ) so

q = ≠—



Motor Model

The instant model of the motor in “Code of Arms” has the following form

“ac(t) –a(t)

and the non-instant model has the following form.

q“a +
s

—

c(t) –a(t)

Determine the step response of the non-instant model.



Motor Model

Start by determining the di↵erential equation that relates c(t) and –a(t).
d–a(t)

dt
= —–a(t) ≠ —“ac(t)

Assume the motor speed is initially zero and the input c(t) = 1 for t > 0.
Output –a(t) can be written as a sum of homogeneous and particular parts.

The particular part –p(t) has the form of the input signal: a constant B.

Substituting –p(t) = B into the di↵erential equations shows that B = “a.

The homogeneous part can be found by setting the input c(t) to 0.
d–h(t)

dt
= —–h(t)

The resulting equation defines an eigenfunction, so –h(t) = Ae
st for t > 0.

sAe
st = —Ae

st

The only non-trival solution is s = —.

–a(t) = –h(t) + –p(t) = Ae
—t + “a

Setting –a(0) to 0 shows that A = ≠“a so the final answer is

–a(t) = “a(1 ≠ e
—t)



Step Response

Non-instant motor model:

q“a +
s

—

c(t) –a(t)

Step response of motor model

–a(t) = “a(1 ≠ e
—t)

Result when — = ≠20:

t

–a(t)

0 0.05 0.1 0.15 0.2 0.25
0

“a


