
6.3100: Dynamic System Modeling and Control Design

Hybrid CT-DT Control

December 04, 2024

Hybrid Representations

To date, we have analyzed both continuous-time and discrete-time models

of plants (motor, arm, maglev) and controllers (PID, lead, SS).

Choosing continuous versus discrete was largely a matter of convenience:

• continuous frequencies (Hz) versus discrete frequencies (radians)

• unit circle versus left and right half-planes

• eigenfunctions est versus zn

No clearly better choice because all of our systems have been hybrids:

• plant: continuous time

• controller (Teensy): discrete time

Today: Analyze interactions of discrete and continuous parts

in terms of a specific concrete context: motor speed control.

Motor Speed Control

Circuit model of a DC motor.g

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

The voltage v(t) represents the electrical input to the motor.

It excites a current i(t), which generates a torque kmi(t) that tends to

rotate the motor shaft.

The torque is resisted by the moment of inertia J and by friction (kf).

As the motor spins, it generates a back emf keω(t) that tends to reduce

the electrical current i(t) drawn by the motor.

Motor Speed Control: Two-Port Model

Motors have two ports: one is electrical, the other is mechanical.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

this Electrical port Mechanical port

Motor Speed Control: Mathematical Representation

Simple circuit analysis provides a mathematical representation.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)
dt

+ keω(t) kmi(t) = kfω(t) + J
dω(t)
dt

Parameters of the Model

Lego EV3 motor parameters.

r = 7 Ω
l = 0.005 H

ke = 0.46 volts/(radian/sec)

km = 0.3 Nm/(radian/sec)

kf = 0.00073 Nm/(radian/sec)

J = 0.0015 Nm/(radian/sec2)

Continuous-Time State-Space Representation

Analyze in continuous time since the equations are in continuous time.

i(t) r l

keω(t) kmi(t)
1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)
dt

+ keω(t) kmi(t) = kfω(t) + J
dω(t)
dt

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1
l

0

]
v(t)

d

dt

}

x(t) =
}
A

}
x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[
i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

Motor Speed Control: State-Space Model

State-space block diagram.

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1
l

0

]
v(t)

d

dt

}

x(t) =
}
A

}
x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[
i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

Full-State Feedback

We wish to design a feedback system to make the output speed y(t) = ω(t)
track the desired speed yd(t).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

We can find K by using pole placement:

K = place(A,B,[pole1,pole2])
or LQR:

K = lqr(A,B,Q,R) where Q = diag([penalty1,penalty2]) and R = 1

Then Kr is set to minimize steady-state errors.

Kr = -1/(C*inv(A-B*K)*B)

Effects of Increasing Gain

Columns show step responses for increasing gains K as Q is increased from

[1, 1] to [1, 10] to [1, 100] while R is constant at R = 1.

As expected, increasing gains speed convergence.

Effects of Sensor Noise

Feedback control can be significantly degraded by noise.

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Effects of Sensor Noise

Feedback control can be significantly degraded by noise.

+ +

+

Kr B

∫
C

A

K

plant

+ +

+

Kr B

∫
C

A

K

−

n(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

In the last lecture, we introduced a model for sensor noise.

Full-State Feedback Results With Noise

Same amount of added noise in each column. Gains increase left to right.

Increasing the gains speeds convergence but also increases noise in the

effort and states, especially important for the output (speed of rotation).

Check Yourself

Why does increasing the gains increase noise sensitivity?

+ +

+

Kr B

∫
C

A

K

plant

+ +

+

Kr B

∫
C

A

K

−

n(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

Sensors

Full-state sensing is both a strength and a weakness. It provides a maximum

amount of feedback information, but it requires sensing all possible states.

What if information about internal states is not available?

Feedback with an Observer

An observer provides estimates of states that are difficult to measure.

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−

Observer Results With Noise

As in full-state feedback, increasing the gain of a controller with observer

speeds convergence.

Gains K increase from left to right.

Effects of Sensor Noise

Sensor noise at the output is an important source of noise.

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−

+

n(t)

Observer Results With Noise

Same level of noise in each column, with gains increasing from left to right.

An observer effectively reduces noise, even with high gain feedback.

Controller Analysis

We analyzed the controller in CT even though it is intrinsically DT.

+ +

+

Kr B

∫
C

A

K

plant

+ +

+

Kr B

∫
C

A

K

−

n(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−

+

n(t)

Hybrid Representation

To use a microprocessor to control a continous time (physical) plant, we

must convert between CT and DT representations of signals.

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

Hybrid Representation

To use a microprocessor to control a continous time (physical) plant, we

must convert between CT and DT representations of signals.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

We use an analog-to-digital converter (ADC) to create a discrete-time

representation of the state and output,.

We use a digital-to-analog converter (DAC) to reconstruct a continuous-

time representation of the command u[n].

Analog-To-Digital Conversion

Analog-to-digital conversion entails two types of transformations.

Sampling: process by which a function of real domain is transformed into

a function of integer domain.

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

Sampling

A function of real domain is transformed into a function of integer domain.

t

f(t)

0∆T 2∆T 4∆T 6∆T 8∆T 10∆T
n

f [n] = f(n∆)

0 2 4 6 8 10

Quantization

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

−1

0

1

t

vi(t)

2 bits

0
0 vi

vo

−1

0

1

t

vi(t)

3 bits

0
0 vi

vo

−1

0

1

t

vi(t)

4 bits

0
0 vi

vo

Continuous-Time Signal vi(t)
Quantized Signal

Quantization Error (difference)

Hybrid Representation

To use a microprocessor to control a continous time (physical) plant, we

must convert between CT and DT representations of signals.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

We use an analog-to-digital converter (ADC) to create a discrete-time

representation of the state and output,.

We use a digital-to-analog converter (DAC) to reconstruct a continuous-

time representation of the command u[n].

Digital-To-Analog Conversion

Digital-to-analog conversion reconstructs an analog signal from its digital

representation. zero-order hold

n

x[n]

0 2 4 6 8 10
t

x(t)

0 2∆T 4∆T 6∆T 8∆T 10∆T

Hybrid Representation

Explicitly convert y(t)→ y[n], x(t)→ x[n] and u[n]→ u(t).

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Hybrid Representation

More changes are needed to convert an observer system to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

Signals outside plant (e.g., u[n] and y[n] must be discrete time.

Integrator in plant → delay in the observer: x̂(t)→ x̂[n]; ˙̂x(t)→ x̂[n+1]
Control matrices A,B,C,L, and K must be converted to discrete versions.

Hybrid Representation

More changes are needed to convert an observer system to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

How can we convert A, B, C to Ad, Bd, Cd?

Discrete-Time State Evolution

Start by considering the scalar case.

The continuous-time state evolution equation is

ẋ(t) = ax(t) + bu(t)
Since u[n] only changes on step boundaries, u(t) is constant between steps.

Then x(t) has homogeneous and particular parts:

x(t) = αeβt + γ

Substituting into the plant equation:

ẋ(t) = βαeβt = ax(t) + bu(t) = a(αeβt + γ) + bu(t)
shows that β = a and γ = −bu(t)/a so that

x(t) = αeat−bu(t)/a

t

u(t)

t

x(t)

Discrete-Time State Evolution

The discrete-time state evolution equation computes x[n+1] = x((n+1)∆T)
from x[n] = x(n∆T).

t, n∆T

u(t)

t, n∆T

x(t)

n
n

+
1

x(t) = αeat − bu(t)/a

x[n] = αean∆T − bu[n]/a

x[n+1] = αea(n+1)∆T︸ ︷︷ ︸
ea∆T αean∆T︸ ︷︷ ︸

x[n]+bu[n]/a

−bu[n]/a

x[n+1] = ea∆Tx[n] +
(
ea∆T−1

) b
a
u[n]

Discrete-Time State Evolution

Use linear algebra to compute the analogous matrix expression.

State update equation (scalar form):

x[n+1] = ea∆Tx[n] +
(
ea∆T − 1

) b
a
u(t)

State update equation (matrix form):

x[n+1] = eA∆T x[n] +
(
eA∆T−I

)
A−1Bu[n]

Discrete version of state evolution equation:

x[n+1] = Adx[n] +Bdu[n]
where

Ad = eA∆T

Bd =
(
eA∆T−I

)
A−1B

The exponential function in the scalar form is replaced by a matrix expo-

nential function in the matrix form.

Discrete-Time State Evolution

Comparison of discrete and continuous time plant descriptors.

Continuous Time

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Discrete Time

ẋ[n+1] = Adx[n] +Bdu[n]

y[n] = Cdx[n] +Ddu[n]

where

Ad = eA∆T

Bd =
(
eA∆T−I

)
A−1B

Cd = C

Dd = D

Discrete-Time Gain Matrices

For continuous-time observers, we find the state feedback matrix K by

solving a continuous-time minimization problem:

min
K

(∫ ∞
0

xT (τ)Qx(τ)dτ +
∫ ∞

0
uT (τ)Ru(τ)dτ

)
For discrete-time observers, we find the state feedback matrix Kd by solving

a discrete-time minimization problem:

min
Kd

(∞∑
m=0

xT [m]Qx[m] +
∞∑
m=0

uT [m]Ru[m]
)

These algorithms are different!

For continuous-time systems:

K=lqr(A,B,Q,R)
L=lqr(A.’,B.’,Q,R).’

For discrete-time systems:

Kd=dlqr(Ad,Bd,Q,R)
Ld=dlqr(Ad.’,Bd.’,Q,R).’

Check Yourself

Consider a state-space controller for the motor model.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Which of the following values of K will work best if ∆T << τ?

K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Check Yourself

Consider an observer-based controller for the motor.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

Which of the following values of Kd will work best?
K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Summary

Microcontrollers (such as the Teensy) are increasingly used to control sys-

tems because of their low cost and high performance.

Using a microcontroller with a physical plant creates a hybrid system with

part described in continuous time and part described in discrete time.

Optimization algorithms (such as pole placement and LQR) have been

developed for both continuous- and discrete-time systems.

Next Time

Micro-robots with Professor Kevin Chen

