6.3100: Dynamic System Modeling and Control Design

Linear Quadratic Regulator

November 13, 2024

Modern Control

State-Space Approach

e Describe a system by its states.

e Describe dynamics of a system by first-order relations among states.
e Collect the states and relations in a single first-order matrix equation.

u(t X(t
ya(t) —> @—()> x(t) = Ax(t) + Bu(t)), C |y
! —.
Plant: state matrix A, input vector B, and output vector C:

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
Feedback is characterized by a feedback vector K and input scaler K,.:

u(t) = Kyya(t) — Kx(t)
Combine to obtain closed-loop characterization:
x(t) = (A-BK)x(t) + BKyu(t) = Acx(t) + Beya(?)

From State-Space to Transfer Function

Find the transfer function representation from the state-space description.
Start with the state equation:
x(t) = Acx(t)+Beul(t)
Consider the input u(t) and state x(¢) at a particular complex frequency s:
u(t) = U(s)e* and x(t) = X(s)e*
Find H(s) at the same complex frequency.
sX(s)e = AcX(s)e + BeU(s)e™
sX(s) = AcX(s) + BU(s)
(sI—A¢)X(s) = BU(s)
X(s) = (sI-A.) 'BcU(s)
Y (s) = CeX(s) = Co(sI-Ae) ' BeU(s)

Y (s)

HE) = 56s)

= C.(sI-A¢) " 'B.

State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?
Y (s) adj(sI-A)
X(s) |sI—A|

If [sI-A| =0, H(s) is unbounded and therefore |Y(s)| — oo.

B

H(s) = = C.(sI-A)"'B, = C,

The natural frequencies are the solutions to the characteristic equation:

sI-A.| =0

Step Response

Find the step response xg(t) of the following matrix system equation:
x(t) = Px(t) + Qu(t)

Assume the initial value of the step response x5(0) = 0, and u(t)=1 for ¢>0.

Homogeneous equation: Xy (t) = Pxy(t)

xp(t) = Pl
Particular solution: xp(t) = ®

Xp(t) =0=P® +Q

® = —P!'Q (provided that P is not singular)

Initial condition: x(0) =¥ —P71Q =10

¥ =P 1Q
Step response:

xs(t) = (P —T)P71Q

=P -1)Q

Exponential functions play important role in solving matrix diff eq’s.

Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:
e’ =T1+P+P?/2 + P3/31 + P4/4l 4 ...

To avoid computing infinite sums, we can diagonalize the matrix P.

Start with the eigenvector/eigenvalue property:

Vi—s| P —» \;V;

where)\; is the ith eigenvalue and v; is the ith eigenvector (a column vector).
Assemble the eigenvectors into an eigenvector matrix:

o

and the eigenvalues into an eigenvalue matrix:
-\
A= A2

V= VI‘VQ‘Vg‘ cee

If P is full rank and if none of the eigenvalues are repeated
P=VAV1

P = VeAV_1

Controller Design

Many methods to optimize performance of classical controllers choose
gains to move closed-loop poles to locations that are favorable for

e stability,

e disturbance rejection,

® noise immunity, etc.

Example: the root-locus method allows us to see all of the closed-loop pole
positions that can be accessed by changing a gain K.

More powerful design methods exist for state-space controllers.
For example, we can use the pole placement algorithm to set the closed-
loop pole positions ANYWHERE in the complex plane!

Pole Placement

The pole placement algorithm determines gains K and K, to locate the
closed-loop poles of a state-space model anywhere in the complex plane.

w0 But) |, y(t)

1—<].—
The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:
‘sl—(A—BK)‘ =0

ya(t) —»

Fundamental theorem of algebra: an nth order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

— characteristic polynomial can be written as a product of first-order terms:
n

‘SI—(A—BK)‘ = [J(s—s:) =0

i=1

LHS: n'" order polynomial in s (pole locations)

RHS: same polynomial, but coeff’s in terms of desired pole locations s;.

Pole Placement

With full-state feedback, the gain K can be adjusted to produce ANY set
of n closed-loop poles! — much more powerful than classical methods!

The design problem shifts ...
e from finding gains to optimize pole locations (classical view)
e to finding pole locations to optimize performance (modern view).

Unfortunately, the relation between pole locations and performance is not
simple. For example, we often have multiple objectives.

Example: Optimizing Performance

S0
1 y(t)
Plant:
k(u®—y(0)) = by(t) = mi()
F ma

Express differential equation as a first-order matrix differential equation:

250 Lt i [

x(t) A x(t) B

Decide where to put the two closed-loop poles s;:

n

|sI—(A—BK)| = H(s—si) =0

Example: Optimizing Performance
We can place the poles anywhere — which places are best?

Poles at -2 and -2.5 Poles at -5 and -5.5 Poles at -8 and -8.5
4 15
30
= 3 = =
= _/' £ 10+ £ 20
24 Il Il
£ Z 5 = 10
= 14 = 5 g
.......... 04 S—
0= T 0 T
2 2 2

o
o

y(t)

o =
y(t)

H

y(t)

H

3 3 3
_ 29 _ 29 _ 29
= = =
= = =

14 14 14

. /’I\‘ o I : ‘ o I ‘

0 1 2 0 1 2 0 1 2
time [s] time [s] time [s]

Large negative poles — fast response. \/
Large negative poles — large effort. X

Example: Optimizing Performance

How do we find the “best” pole locations?
Which is better: small effort or fast response?

We'd like both — but that's not generally feasible.

Prioritizing Mixed Objectives with a Cost Function

More generally, we can define a cost function to assign a real-valued
penalty to all possible scenarios.
e cost: 1 point per dollar 4+ 1/10 point per minute

mode dollars time cost

[
OA\ walk $0.00 3h 50m 23
BLUEbikes bike $10.00 1h 4m 16.4
@ subway/bus $2.40 1h 2m 8.6

Uber auto $38.33 46m 42.93

Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on z(t) or peak value of y(t).

poles: -2.58x2.77]

Poles at -5 and -5.5

u(t) = x(t)
= x(t)

u(t)

T o]
1 2
time [s]

o

T
1 2
time [s]

o

A better cost function might consider entire time functions (z(t) and y(t))

Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors: f(desired—measured)2 dt.

poles: -2.58x2.77]

= x(t)

ult)

y(t)
(=] =
yit)
o [

i)

time [s]

Poles at -5 and -5.5

= x(t)

u(t)

yit)

time [s]

Squaring penalizes both positive and negative errors,

and it's mathematically tractible.

Quadratic Cost Functions

Define a cost function J that depends on the integral of the squares of the
elements of x(¢) and u(?):

J = /0 h (xT(t) Qx(t) +u” () Ru(t))dt

where Q and R are matrix constants that we can choose so as to weight
errors in each component of x(t) and u(t) differently.

The goal will be to find the gain matrices K and K, to minimize J.

Linear Quadratic Regulator (LQRY)

We want to find the gain matrix K that minimizes the cost function
o0
J= / (x™ (1) Qx(t) + ™ (1) Ru(r))t
0

where u(t) and x(t) are related
e by the state transition equation: x(¢) = Ax(t) + Bu(¢) and
e by the feedback constraint (for homogeneous case): u(t) = —Kx(t).

The “optimal” K can be shown to be given by
K =R 'BTS
where S is the symmetric nxn solution to the algebraic Riccati equation:

ATS+SA —-SBR!BTS+Q=0

1 quadratic regulation of a linear system

LQR Solution
Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices A and B and the LQR weights Q and R,
the following Python code

> from control import 1lqr

> X,S8,E = 1qr(A,B,Q,R)

and MATLAB code
> K,S,E = 1gr(4,B,Q,R);

finds the optimal solutions and returns

e K: state feedback gains,

e S: solution to the algebraic Riccati equation, and
e E: eigenvalues of the resulting closed-loop system.

Example: Two-Spring System

A plant consists of two springs and two masses. Use the input u(t) = zo(t)
to move the bottom mass to the desired location za(t) = ya(t).

Classical Control

A classical controller for this problem has the following form.

1) —> @2 =l

T

two-spring
system

To solve this classical control problem, we must
e find the equations of motion for the plant (the two-spring system) and

e express those equations in terms of a transfer function.

> y(t)=w2(t)

Check Yourself

r

[Which plot (if any) shows the poles of the two-spring system? }

1. Im 2. Im 3. Im 4. Im
X X | X X X
X
Re Re X Re Re
X
X X | X X X

Two-Spring System

Equations of motion.

Fon = mi (1) = k:(a:o(t)—xl(t)> _ k(xl(t)—a:Q(t)) ~ by (t)
Finz = mia(t) = k:(a:l(t)—a:g(t)> ~ bia(t)

Transfer function:
_ Xa(s) k>

 Xo(s) (s2m 4+ sb+ 2k)(s2m + sb+ k) — k2

H(s)

Classical Control

Try proportional control.

i) —> @l 16, > y(H)=a(t)

T

The feedback system is stable for only a small range of gains: K,<2.7

v

Step responses (mass m = 1, stiffness k = 2, damping b = 1.4):

Kp=1 Kp=1.4 Ky =27
2.0 i 2.0 i 2.0 d
T 1.5 T 1.5 T 1.5
< < <
I L0 e T am—— — I 104 I 104
)))
> 0.5 - > 0.5 A > 0.5 A
0.0 T T T T T 0.0 T T T T T 0.0 T T T T T
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s] time [s]

Slow convergence and large oscillatory overshoots.
Why such poor behavior?

Classical Control

Root Locus: As Kp increases, the lower and higher frequency poles con-
verge with no change in damping, then split and approach asymptotic
trajectories at angles of +7/4 and +3w/4. Unstable when poles enter right

half-plane.

Im(s)

Re(s)

Good explanation of what happened.
Try proportional plus derivative control.

Classical Control

Proportional plus derivative performance is only slightly better.

e(t) u(t)=wo(t)
ya(t) —>(H—> H{(s) > y(t)=x2(1)
Step responses:
. Ko=1 . Ko =1;Kg=0.7
T 157 T 15
R SR St S — I 1.0 —
= 051 = 051 /\/__‘
0.0 L+ T T T T T 0.0 L+ T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]

Somewhat smaller overshoot, but still slow convergence.

Classical Control

Root Locus: Increase K, while holding K; = K,/0.7. Derivative term adds
a zero and changes the asymptotic behavior, but closed-loop system still
goes unstable.

Im(s)

Re(s)

y XX X

Good explanation of what happened — but how do we make it faster?
Try state-space approach.

Check Yourself

Find A, B, and C so that x = Ax+ Bu and y = Cx.
How many non-zero entries are in A?

State-Space Controller

A state-space controller can then be expressed as follows.

ya(t) —»| K, #@it)b@x—(t)b X(ﬁb y(t)

How do we find K and K,7?

State-Space Controller

A state-space controller can then be expressed as follows.

va(t) —| K, _.@w.@ x(t) [T %)

Find K with pole placement:
K = place(A,B, [poles])
or LQR:
K = 1qr(A,B,Q,R) where Q = diag([1,1,1,1]) andR =1

How to find K,7?

State-Space Controller

K, does not affect stability. Choose K, to minimize steady-state error.

ya(t) —»| K, —b@it)b@x—(t)b X(—b

Find the steady-state values of x:
x=0=(A-BK)x+ BK,y,

x = —(A-BK) 'BK,y,
We want y = yg4:
y = Cx = —C(A-BK) 'BK,y,
Divide out g4 (under the assumption that y = yq # 0):
—1

K= Ca—BK) 1B

State-Space Control

Try LQR.
Start with flat parameters Q = diag([1,1,1,1]) and R = [[1]].

vl —sT &, _.@_“_“).@i“. 0N o IRV

Q:1,111landR: 1

=x(t)
=
o

¥t

time [s]

Convergence is slow but monotonic. Can we make it faster?

State-Space Control
Try different values of Q and R.

Q:1,1,1,1andR: 1 Q:10,10,10,10 and R: 1 Q:100,100,100,100; R: 1
15+

2.75 4

2.50 4

xolt)
Xolt)
xglt)

10 4

2.25 1

u(t)
ult)
ult)
v

2.00 1 -

0.75 A

0.50

x(t)
x(t)
x(t)

0.25

0.00 4

x(t)

time [s] time [s] time [s]

State-Space Control

Try different values of Q and R.

Q:0,100,100,100and R: 1 Q: 100, 100,0,100and R: 1
154 15 1
‘;5 10 4 ‘;5 10 4
I I
g% g s
0,

x(t)

time [s]

xglt)

ult)

Q:0,100,0,100 and R: 1

15+

10+

State-Space Control

Try different values of Q and R.
Q: 0,100, 0,100 and R: 1

Q:0,0,0,100and R: 1

15+

xglt)
xglt)

10+

ult)
v
ult)

04
¥
£

LU=}
o
5]

xglt)

ult)

Q:0,100,0,0 andR: 1

State-Space Control

Try different values of Q and R.
Q:0,1,0,0andR: 1

xglt)

ult)

x(t)

0.75

0.50

0.25

0.00

x(t)

Q:0,100,0,0 andR: 1

xglt)

ult)

2,
= 14
Tl
0-
T . T T T
2 2
1 S Fam—
= y
0 o]

time [s]

xglt)

ult)

x(t)

x(t)

10+

30 4

207

Q:0,1000,0,0 and R: 1

Summary

State-space control with full-state feedback offers technical and intuitive
advantages over the most common types of classical control.

The pole placement algorithm allows one to specify the locations of all of
the closed-loop poles.

LQR provides intuitive refinement of feasible solutions to a control problem.

