
6.3100: Dynamic System Modeling and Control Design

Linear Quadratic Regulator

November 13, 2024

Modern Control

State-Space Approach

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Plant: state matrix A, input vector B, and output vector C:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Feedback is characterized by a feedback vector K and input scaler Kr:

u(t) = Kryd(t)−Kx(t)
Combine to obtain closed-loop characterization:

ẋ(t) =
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)

From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

ẋ(t) = Acx(t)+Bcu(t)
Consider the input u(t) and state x(t) at a particular complex frequency s:

u(t) = U(s)est and x(t) = X(s)est

Find H(s) at the same complex frequency.

sX(s)est = AcX(s)est +BcU(s)est

sX(s) = AcX(s) +BcU(s)

(sI−Ac)X(s) = BcU(s)

X(s) = (sI−Ac)−1BcU(s)

Y (s) = CcX(s) = Cc(sI−Ac)−1BcU(s)

H(s) = Y (s)
U(s) = Cc(sI−Ac)−1Bc

State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?

H(s) = Y (s)
X(s) = Cc(sI−A)−1Bc = Cc

adj(sI−A)
|sI−A|

Bc

If |sI−A| = 0, H(s) is unbounded and therefore |Y (s)| → ∞.

The natural frequencies are the solutions to the characteristic equation:∣∣∣s I−Ac

∣∣∣ = 0

Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

xh(t) = ePt	

Particular solution: xp(t) = �

ẋp(t) = 0 = P�+Q

� = −P−1Q (provided that P is not singular)

Initial condition: x(0) = 	− P−1Q = 0

	 = P−1Q

Step response:

xs(t) = (ePt − I)P−1Q

= P−1(ePt − I)Q

Exponential functions play important role in solving matrix diff eq’s.

Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·
To avoid computing infinite sums, we can diagonalize the matrix P.

Start with the eigenvector/eigenvalue property:

Pvi λivi

where λi is the ith eigenvalue and vi is the ith eigenvector (a column vector).

Assemble the eigenvectors into an eigenvector matrix:

V =
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]

and the eigenvalues into an eigenvalue matrix:

� =

λ1
λ2

. . .

If P is full rank and if none of the eigenvalues are repeated

P = V�V−1

eP = Ve�V−1

Controller Design

Many methods to optimize performance of classical controllers choose

gains to move closed-loop poles to locations that are favorable for

• stability,

• disturbance rejection,

• noise immunity, etc.

Example: the root-locus method allows us to see all of the closed-loop pole

positions that can be accessed by changing a gain K.

More powerful design methods exist for state-space controllers.

For example, we can use the pole placement algorithm to set the closed-

loop pole positions ANYWHERE in the complex plane!

Pole Placement

The pole placement algorithm determines gains K and Kr to locate the

closed-loop poles of a state-space model anywhere in the complex plane.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:∣∣∣sI−(A−BK)
∣∣∣ = 0

Fundamental theorem of algebra: an nth order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

→ characteristic polynomial can be written as a product of first-order terms:∣∣∣sI−(A−BK)
∣∣∣ =

n∏
i=1

(s−si) = 0

LHS: nth order polynomial in s (pole locations)

RHS: same polynomial, but coeff’s in terms of desired pole locations si.

Pole Placement

With full-state feedback, the gain K can be adjusted to produce ANY set

of n closed-loop poles! → much more powerful than classical methods!

The design problem shifts ...

• from finding gains to optimize pole locations (classical view)

• to finding pole locations to optimize performance (modern view).

Unfortunately, the relation between pole locations and performance is not

simple. For example, we often have multiple objectives.

Example: Optimizing Performance

u(t)

y(t)
Plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Express differential equation as a first-order matrix differential equation:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

Decide where to put the two closed-loop poles si:

|sI−(A−BK)| =
n∏

i=1
(s−si) = 0

Example: Optimizing Performance

We can place the poles anywhere – which places are best?

Large negative poles → fast response.
√

Large negative poles → large effort. X

Example: Optimizing Performance

How do we find the “best” pole locations?

Which is better: small effort or fast response?

We’d like both – but that’s not generally feasible.

Prioritizing Mixed Objectives with a Cost Function

More generally, we can define a cost function to assign a1real-valued

penalty to all possible scenarios.

• cost: 1 point per dollar + 1/10 point per minute

mode dollars time cost

walk $0.00 3h 50m 23

bike $10.00 1h 4m 16.4

subway/bus $2.40 1h 2m 8.6

auto $38.33 46m 42.93

Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on x(t) or peak value of y(t).
∫

12 dt

A better cost function might consider entire time functions (x(t) and y(t)).

Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors:
∫

(desired-measured)2 dt.

Squaring penalizes both positive and negative errors,

and it’s mathematically tractible.

Quadratic Cost Functions

Define a cost function J that depends on the integral of the squares of the

elements of x(t) and u(t):

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where Q and R are matrix constants that we can choose so as to weight

errors in each component of x(t) and u(t) differently.

The goal will be to find the gain matrices K and Kr to minimize J .

Linear Quadratic Regulator (LQR1)

We want to find the gain matrix K that minimizes the cost function

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint (for homogeneous case): u(t) = −Kx(t).

The “optimal” K can be shown to be given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

quadratic regulation of a linear system1

LQR Solution

Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices A and B and the LQR weights Q and R,

the following Python code

> from control import lqr
> K,S,E = lqr(A,B,Q,R)

and MATLAB code

> K,S,E = lqr(A,B,Q,R);

finds the optimal solutions and returns

• K: state feedback gains,

• S: solution to the algebraic Riccati equation, and

• E: eigenvalues of the resulting closed-loop system.

Example: Two-Spring System

A plant consists of two springs and two masses. Use the input u(t) = x0(t)
to move the bottom mass to the desired location x2(t) = yd(t).

yd(t)

x0(t)

x1(t)

x2(t)

Classical Control

A classical controller for this problem has the following form.

+ K(s)
−

two-spring
system

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

To solve this classical control problem, we must

• find the equations of motion for the plant (the two-spring system) and

• express those equations in terms of a transfer function.

Check Yourself

x0(t)

x1(t)

x2(t)

Which plot (if any) shows the poles of the two-spring system?

Re

Im1.

Re

Im2.

Re

Im3.

Re

Im4.

Two-Spring System

Equations of motion.

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t)−x1(t)

)
− k
(
x1(t)−x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t)−x2(t)

)
− bẋ2(t)

Transfer function:

H(s) = X2(s)
X0(s) = k2

(s2m+ sb+ 2k)(s2m+ sb+ k)− k2

Classical Control

Try proportional control.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

The feedback system is stable for only a small range of gains: Kp<2.7

Step responses (mass m = 1, stiffness k = 2, damping b = 1.4):

Slow convergence and large oscillatory overshoots.

Why such poor behavior?

Classical Control

Root Locus: As Kp increases, the lower and higher frequency poles con-

verge with no change in damping, then split and approach asymptotic

trajectories at angles of ±π/4 and ±3π/4. Unstable when poles enter right

half-plane.

Re(s)

Im(s)

Good explanation of what happened.

Try proportional plus derivative control.

Classical Control

Proportional plus derivative performance is only slightly better.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses:

Somewhat smaller overshoot, but still slow convergence.

Classical Control

Root Locus: Increase Kp while holding Kd = Kp/0.7. Derivative term adds

a zero and changes the asymptotic behavior, but closed-loop system still

goes unstable.

Re(s)

Im(s)

Good explanation of what happened – but how do we make it faster?

Try state-space approach.

Check Yourself

Find A, B, and C so that ẋ = Ax+Bu and y = Cx.

How many non-zero entries are in A?

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t)− x1(t)

)
− k
(
x1(t)− x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t)− x2(t)

)
− bẋ2(t)

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

State-Space Controller

A state-space controller can then be expressed as follows.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

How do we find K and Kr?

State-Space Controller

A state-space controller can then be expressed as follows.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Find K with pole placement:

K = place(A,B,[poles])
or LQR:

K = lqr(A,B,Q,R) where Q = diag([1,1,1,1]) and R = 1

How to find Kr?

State-Space Controller

Kr does not affect stability. Choose Kr to minimize steady-state error.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Find the steady-state values of x:

ẋ = 0 = (A−BK)x+BKryd

x = −(A−BK)−1BKryd

We want y = yd:

y = Cx = −C(A−BK)−1BKryd

Divide out yd (under the assumption that y = yd 6= 0):

Kr = −1
C(A−BK)−1B

State-Space Control

Try LQR.

Start with flat parameters Q = diag([1, 1, 1, 1]) and R = [[1]].

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Convergence is slow but monotonic. Can we make it faster?

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

Summary

State-space control with full-state feedback offers technical and intuitive

advantages over the most common types of classical control.

The pole placement algorithm allows one to specify the locations of all of

the closed-loop poles.

LQR provides intuitive refinement of feasible solutions to a control problem.

