6.3100: Dynamic System Modeling and Control Design

Linear Quadratic Regulator

November 13, 2024

Modern Control

State-Space Approach

- Describe a system by its **states**.
- Describe dynamics of a system by **first-order** relations among states.
- Collect the states and relations in a single first-order matrix equation.

$$
y_d(t) \longrightarrow K_r \longrightarrow \bigoplus_{t \in \mathbb{R}} \frac{u(t)}{\mathbf{x}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)} \longrightarrow \mathbf{C} \longrightarrow y(t)
$$

Plant: state matrix **A**, input vector **B**, and output vector **C**:

$$
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)
$$

$$
y(t) = \mathbf{C}\mathbf{x}(t)
$$

Feedback is characterized by a feedback vector **K** and input scaler K_r :

$$
u(t) = K_r y_d(t) - \mathbf{Kx}(t)
$$

Combine to obtain **closed-loop** characterization:

$$
\dot{\mathbf{x}}(t) = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x}(t) + \mathbf{B}\mathbf{K}_{\mathbf{r}}y_d(t) \equiv \mathbf{A}_{\mathbf{c}}\mathbf{x}(t) + \mathbf{B}_{\mathbf{c}}y_d(t)
$$

From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

$$
\dot{\mathbf{x}}(t) = \mathbf{A_c}\mathbf{x}(t) + \mathbf{B_c}u(t)
$$

Consider the input $u(t)$ and state $x(t)$ at a particular complex frequency *s*:

$$
u(t) = U(s)e^{st} \text{ and } \mathbf{x}(t) = \mathbf{X}(s)e^{st}
$$

Find $H(s)$ at the same complex frequency.

$$
s\mathbf{X}(s)e^{st} = \mathbf{A}_{c}\mathbf{X}(s)e^{st} + \mathbf{B}_{c}U(s)e^{st}
$$

\n
$$
s\mathbf{X}(s) = \mathbf{A}_{c}\mathbf{X}(s) + \mathbf{B}_{c}U(s)
$$

\n
$$
(s\mathbf{I} - \mathbf{A}_{c})\mathbf{X}(s) = \mathbf{B}_{c}U(s)
$$

\n
$$
\mathbf{X}(s) = (s\mathbf{I} - \mathbf{A}_{c})^{-1}\mathbf{B}_{c}U(s)
$$

\n
$$
Y(s) = \mathbf{C}_{c}\mathbf{X}(s) = \mathbf{C}_{c}(s\mathbf{I} - \mathbf{A}_{c})^{-1}\mathbf{B}_{c}U(s)
$$

\n
$$
H(s) = \frac{Y(s)}{U(s)} = \mathbf{C}_{c}(s\mathbf{I} - \mathbf{A}_{c})^{-1}\mathbf{B}_{c}
$$

State-Space Analysis of Natural Frequencies

Are there frequencies *s* for which large outputs result when input $u(t)=0$?

$$
H(s) = \frac{Y(s)}{X(s)} = \mathbf{C_c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B_c} = \mathbf{C_c} \frac{\text{adj}(s\mathbf{I} - \mathbf{A})}{|s\mathbf{I} - \mathbf{A}|} \mathbf{B_c}
$$

If $|sI-A| = 0$, $H(s)$ is unbounded and therefore $|Y(s)| \to \infty$.

The natural frequencies are the solutions to the **characteristic equation**: s **I**−**A**_c $\Big|$ $= 0$

Step Response

Find the step response $\mathbf{x}_s(t)$ of the following matrix system equation:

$$
\dot{\mathbf{x}}(t) = \mathbf{P}\mathbf{x}(t) + \mathbf{Q}u(t)
$$

Assume the initial value of the step response $\mathbf{x}_s(0) = \mathbf{0}$, and $u(t)=1$ for $t>0$.

Homogeneous equation: $\dot{\mathbf{x}}_h(t) = \mathbf{P}\mathbf{x}_h(t)$

$$
\mathbf{x_h}(t) = e^{\mathbf{P}t}\mathbf{\Psi}
$$

Particular solution: $\mathbf{x_p}(t) = \mathbf{\Phi}$

$$
\dot{\mathbf{x}}_{\mathbf{p}}(t) = \mathbf{0} = \mathbf{P}\Phi + \mathbf{Q}
$$

$$
\Phi = -\mathbf{P}^{-1}\mathbf{Q}
$$
 (provided that **P** is not singular)

Initial condition: $\mathbf{x}(0) = \mathbf{\Psi} - \mathbf{P}^{-1} \mathbf{Q} = \mathbf{0}$

$$
\boldsymbol{\Psi} = \mathbf{P}^{-1} \mathbf{Q}
$$

Step response:

$$
\mathbf{x}_{s}(t) = (e^{\mathbf{P}t} - \mathbf{I})\mathbf{P}^{-1}\mathbf{Q}
$$

$$
= \mathbf{P}^{-1}(e^{\mathbf{P}t} - \mathbf{I})\mathbf{Q}
$$

Exponential functions play important role in solving matrix diff eq's.

Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:

$$
e^{\mathbf{P}} = \mathbf{I} + \mathbf{P} + \mathbf{P}^{2}/2! + \mathbf{P}^{3}/3! + \mathbf{P}^{4}/4! + \cdots
$$

To avoid computing infinite sums, we can diagonalize the matrix P . Start with the eigenvector/eigenvalue property:

$$
\mathbf{v_i} \longrightarrow \boxed{\mathbf{P}} \longrightarrow \lambda_i \mathbf{v_i}
$$

where λ_i is the i^{th} eigenvalue and $\mathbf{v_i}$ is the i^{th} eigenvector (a column vector). Assemble the eigenvectors into an eigenvector matrix:

$$
\mathbf{V}=\Big[\mathbf{v_1}\Big|\mathbf{v_2}\Big|\mathbf{v_3}\Big|\cdots \Big|\mathbf{v_n}\Big]
$$

and the eigenvalues into an eigenvalue matrix:

$$
\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix}
$$

If P is full rank and if none of the eigenvalues are repeated

$$
\boldsymbol{P} = \boldsymbol{V}\boldsymbol{\Lambda}\boldsymbol{V}^{-1}
$$

 $e^{\mathbf{P}} = \mathbf{V} e^{\mathbf{\Lambda}} \mathbf{V}^{-1}$

Controller Design

Many methods to optimize performance of classical controllers choose gains to move closed-loop poles to locations that are favorable for

- stability,
- disturbance rejection,
- noise immunity, etc.

Example: the root-locus method allows us to see all of the closed-loop pole positions that can be accessed by changing a gain *K*.

More powerful design methods exist for state-space controllers. For example, we can use the **pole placement** algorithm to set the closedloop pole positions ANYWHERE in the complex plane!

Pole Placement

The pole placement algorithm determines gains **K** and K_r to locate the closed-loop poles of a state-space model anywhere in the complex plane.

The closed-loop poles of a state-space model are equal to the roots of its characteristic polynomial:

$$
\bigg|s\mathbf{I}-(\mathbf{A}-\mathbf{B}\mathbf{K})\bigg|=\mathbf{0}
$$

Fundamental theorem of algebra: an n^{th} order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

 \rightarrow characteristic polynomial can be written as a product of first-order terms: $s\mathbf{I}-(\mathbf{A}-\mathbf{B}\mathbf{K})\Big| =$ \prod^n *i*=1 $(s - s_i) = 0$

LHS: *n th* order polynomial in *s* (pole locations)

RHS: same polynomial, but coeff 's in terms of desired pole locations *si*.

Pole Placement

With full-state feedback, the gain K can be adjusted to produce ANY set of *n* closed-loop poles! \rightarrow much more powerful than classical methods!

The design problem shifts ...

- from finding gains to optimize pole locations (classical view)
- to finding pole locations to optimize performance (modern view).

Unfortunately, the relation between pole locations and performance is not simple. For example, we often have **multiple objectives.**

Example: Optimizing Performance

$$
\sum_{t=1}^{\infty} u(t)
$$

Plant:

$$
\underbrace{k\Big(u(t)-y(t)\Big)-b\dot{y}(t)}_F=\underbrace{m\ddot{y}(t)}_{ma}
$$

Express differential equation as a first-order matrix differential equation:

$$
\underbrace{\frac{d}{dt} \begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}}_{\dot{\mathbf{x}}(t)} = \underbrace{\begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}}_{\mathbf{x}(t)} + \underbrace{\begin{bmatrix} 0 \\ k/m \end{bmatrix}}_{\mathbf{B}} u(t)
$$

Decide where to put the two closed-loop poles *si*:

$$
|s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})| = \prod_{i=1}^{n} (s - s_i) = 0
$$

Example: Optimizing Performance

We can place the poles anywhere – which places are best?

Example: Optimizing Performance

How do we find the "best" pole locations? Which is better: small effort or fast response?

We'd like both $-$ but that's not generally feasible.

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)?¹

¹adapted from Brian Douglas (MATLAB) and Christopher Lum (U Washington).

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)?

- How much does it cost?
- How long does it take?

It's easy to optimize either objective. But we'd like a solution that costs nothing and takes no time \rightarrow not feasible.

How do we find the best feasible solution? What does "best" even mean?

Prioritizing Mixed Objectives with a Cost Function

More generally, we can define a cost function to assign a real-valued penalty to all possible scenarios.

cost: 1 point per dollar $+$ 1/10 point per minute

Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on $x(t)$ or peak value of $y(t)$.

A better cost function might consider entire time functions $(x(t)$ and $y(t)$).

Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors: \int (desired-measured)² dt.

Squaring penalizes both positive and negative errors, and it's mathematically tractible.

Quadratic Cost Functions

Define a cost function *J* that depends on the integral of the squares of the elements of $\mathbf{x}(t)$ and $\mathbf{u}(t)$:

$$
J = \int_0^\infty \left(\mathbf{x}^{\mathbf{T}}(t) \, \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^{\mathbf{T}}(t) \, \mathbf{R} \mathbf{u}(t) \right) dt
$$

where Q and R are matrix constants that we can choose so as to weight errors in each component of $x(t)$ and $u(t)$ differently.

The goal will be to find the gain matrices K and *K^r* to minimize *J*.

Linear Quadratic Regulator $(LQR¹)$

We want to find the gain matrix K that minimizes the cost function

$$
J = \int_0^\infty \left(\mathbf{x}^{\mathbf{T}}(t) \, \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^{\mathbf{T}}(t) \, \mathbf{R} \mathbf{u}(t) \right) dt
$$

where $\mathbf{u}(t)$ and $\mathbf{x}(t)$ are related

- by the state transition equation: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ and
- by the feedback constraint (for homogeneous case): $\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$.

The "optimal" \bf{K} can be shown to be given by

$$
\mathbf{K} = \mathbf{R}^{-1} \mathbf{B}^{\mathbf{T}} \mathbf{S}
$$

where S is the symmetric *n*×*n* solution to the algebraic Riccati equation:

$$
\mathbf{A^{T}S}+\mathbf{SA}-\mathbf{SBR^{-1}B^{T}S}+\mathbf{Q}=\mathbf{0}
$$

¹ quadratic regulation of a linear system

LQR Solution

Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices **A** and **B** and the LQR weights **Q** and **R**, the following Python code

- > from control import lqr
- $>$ K, S, E = lqr(A, B, Q, R)

and MATLAB code

 $>$ K, S, E = lqr(A, B, Q, R);

finds the optimal solutions and returns

- K: state feedback gains,
- S: solution to the algebraic Riccati equation, and
- E: eigenvalues of the resulting closed-loop system.

Example: Two-Spring System

A **plant** consists of two springs and two masses. Use the input $u(t) = x_0(t)$ to move the bottom mass to the desired location $x_2(t) = y_d(t)$.

A classical controller for this problem has the following form.

To solve this classical control problem, we must

- find the equations of motion for the plant (the two-spring system) and
- express those equations in terms of a transfer function.

Check Yourself

Which plot (if any) shows the poles of the two-spring system?

All of the elements in the two-spring system are passive $-$ they cannot create energy. Therefore none of the poles can be in the right half-plane. Therefore the answer cannot be 2. Intrinsic losses also prevent solution 3.

There are 4 poles. The force exerted by a spring is determined by the displacements of its endpoints. The force on a mass is proportional to acceleration, which is the second derivative of displacement and therefore scales as *s* 2 in frequency. Since there are two masses, the number of characteristic equation will be quartic in *s*.

Thus the answer is 1.

Two-Spring System

Equations of motion.

$$
f_{m1} = m\ddot{x}_1(t) = k\left(x_0(t) - x_1(t)\right) - k\left(x_1(t) - x_2(t)\right) - b\dot{x}_1(t)
$$

$$
f_{m2} = m\ddot{x}_2(t) = k\left(x_1(t) - x_2(t)\right) - b\dot{x}_2(t)
$$

Transfer function:

$$
H(s) = \frac{X_2(s)}{X_0(s)} = \frac{k^2}{(s^2m + sb + 2k)(s^2m + sb + k) - k^2}
$$

Try proportional control.

$$
y_d(t) \longrightarrow \bigoplus_{t \to t} \underbrace{e(t)}_{t} \begin{array}{ccc} & & \text{if } & \text{if
$$

The feedback system is stable for only a small range of gains: $K_p < 2.7$

Step responses (mass $m = 1$, stiffness $k = 2$, damping $b = 1.4$):

Slow convergence and large oscillatory overshoots. Why such poor behavior?

Root Locus: As *K^p* increases, the lower and higher frequency poles converge with no change in damping, then split and approach asymptotic trajectories at angles of ±*π/*4 and ±3*π/*4. Unstable when poles enter right half-plane.

Good explanation of what happened.

Try proportional plus derivative control.

Proportional plus derivative performance is only slightly better.

Step responses:

Somewhat smaller overshoot, but still slow convergence.

Root Locus: Increase K_p while holding $K_d = K_p/0.7$. Derivative term adds a zero and changes the asymptotic behavior, but closed-loop system still goes unstable.

Good explanation of what happened – but how do we make it faster? Try state-space approach.

Check Yourself

Find **A, B,** and **C** so that $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$ and $y = \mathbf{C}\mathbf{x}$.

How many non-zero entries are in \mathbf{A} ?

State-Space Description

Equations of motion:

$$
f_{m1} = m\ddot{x}_1(t) = k\left(x_0(t) - x_1(t)\right) - k\left(x_1(t) - x_2(t)\right) - b\dot{x}_1(t)
$$

$$
f_{m2} = m\ddot{x}_2(t) = k\left(x_1(t) - x_2(t)\right) - b\dot{x}_2(t)
$$

Four state variables (two displacements and their velocities):

$$
\frac{d}{dt} \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{b}{m} & -\frac{2k}{m} & 0 & \frac{k}{m} \\ 1 & 0 & 0 & 0 \\ 0 & \frac{k}{m} & -\frac{b}{m} & -\frac{k}{m} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} \frac{k}{m} \\ 0 \\ 0 \\ 0 \end{bmatrix} x_0(t)
$$

$$
y(t) = [0 \ 0 \ 0 \ 1] \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix}
$$

State-Space Model

How many non-zero entries are in A ? 8

$$
u(t) \rightarrow B \rightarrow \left(\frac{\partial}{\partial t}\right) \rightarrow C \rightarrow y(t)
$$
\n
$$
\mathbf{A} = \begin{bmatrix}\n-\frac{b}{m} & -\frac{2k}{m} & 0 & \frac{k}{m} \\
1 & 0 & 0 & 0 \\
0 & \frac{k}{m} & -\frac{b}{m} & -\frac{k}{m} \\
0 & 0 & 1 & 0\n\end{bmatrix} \quad \mathbf{B} = \begin{bmatrix}\n\frac{k}{m} \\
0 \\
0 \\
0\n\end{bmatrix} \quad \mathbf{C} = \begin{bmatrix}\n0 & 0 & 0 & 1\n\end{bmatrix}
$$
\n
$$
\mathbf{x}(t) = \begin{bmatrix}\nv_1(t) \\
x_1(t) \\
v_2(t) \\
x_2(t)\n\end{bmatrix} \quad u(t) = x_0(t) \quad y(t) = x_2(t)
$$

A state-space **controller** can then be expressed as follows.

How do we find **K** and K_r ?

A state-space **controller** can then be expressed as follows.

Find **K** with **pole placement**:

 $K = place(A, B, [poles])$

or LQR:

 $K = \text{lgr}(A, B, Q, R)$ where $Q = \text{diag}([1, 1, 1, 1])$ and $R = 1$

How to find K_r ?

 K_r does not affect stability. Choose K_r to minimize steady-state error.

Find the steady-state values of x:

$$
\dot{\mathbf{x}} = \mathbf{0} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}K_r y_d
$$

$$
\mathbf{x} = -(\mathbf{A} - \mathbf{B} \mathbf{K})^{-1} \mathbf{B} K_r y_d
$$

We want $y = y_d$:

$$
y = \mathbf{C}\mathbf{x} = -\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}K_r y_d
$$

Divide out y_d (under the assumption that $y = y_d \neq 0$):

$$
K_r = \frac{-1}{\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}}
$$

Try LQR.

Start with flat parameters $\mathbf{Q} = \text{diag}([1, 1, 1, 1])$ and $\mathbf{R} = [[1]].$

Convergence is slow but **monotonic**. Can we make it faster?

Try different values of Q and R .

Try different values of Q and R .

Increasing all values of \bf{Q} doesn't have a big effect on positions x_1 or x_2 . Has big effect on effort *u*(*t*).

Try different values of Q and R .

Try different values of Q and R .

Reducing weight on $v_1(t)$ has bigger effect than reducing weight on $v_2(t)$. Reducing weight on both velocities speeds the displacements most.

Try different values of Q and R .

Try different values of Q and R .

Weighting just the output x_2 lets $x_1(t)$ get very large. Weighting just displacement *x*¹ works surprisingly well.

Try different values of Q and R .

Try different values of Q and R .

Increasing weight on x_1 improves convergence of $x_2(t)$ but increases effort.

Summary

State-space control with full-state feedback offers technical and intuitive advantages over the most common types of classical control.

The pole placement algorithm allows one to specify the locations of all of the closed-loop poles.

LQR provides intuitive refinement of feasible solutions to a control problem.