6.3100: Dynamic System Modeling and Control Design

Linear Quadratic Regulator

November 13, 2024

Modern Control

State-Space Approach

- Describe a system by its states.
- Describe dynamics of a system by **first-order** relations among states.
- Collect the states and relations in a single first-order matrix equation.

$$y_d(t) \rightarrow K_r \rightarrow + u(t) \qquad \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t) \qquad \mathbf{C} \rightarrow y(t)$$

Plant: state matrix A, input vector B, and output vector C:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

$$y(t) = \mathbf{C}\mathbf{x}(t)$$

Feedback is characterized by a feedback vector **K** and input scaler K_r :

$$u(t) = K_r y_d(t) - \mathbf{K} \mathbf{x}(t)$$

Combine to obtain **closed-loop** characterization:

$$\dot{\mathbf{x}}(t) = \left(\mathbf{A} - \mathbf{B}\mathbf{K}\right)\mathbf{x}(t) + \mathbf{B}\mathbf{K}_{\mathbf{r}}y_d(t) \equiv \mathbf{A}_{\mathbf{c}}\mathbf{x}(t) + \mathbf{B}_{\mathbf{c}}y_d(t)$$

From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

$$\dot{\mathbf{x}}(t) = \mathbf{A_c}\mathbf{x}(t) + \mathbf{B_c}u(t)$$

Consider the input u(t) and state $\mathbf{x}(t)$ at a particular complex frequency s:

$$u(t) = U(s)e^{st} \text{ and } \mathbf{x}(t) = \mathbf{X}(s)e^{st}$$

Find H(s) at the same complex frequency.

$$s\mathbf{X}(s)e^{st} = \mathbf{A_c}\mathbf{X}(s)e^{st} + \mathbf{B_c}U(s)e^{st}$$
$$s\mathbf{X}(s) = \mathbf{A_c}\mathbf{X}(s) + \mathbf{B_c}U(s)$$
$$(s\mathbf{I}-\mathbf{A_c})\mathbf{X}(s) = \mathbf{B_c}U(s)$$
$$\mathbf{X}(s) = (s\mathbf{I}-\mathbf{A_c})^{-1}\mathbf{B_c}U(s)$$
$$\mathbf{Y}(s) = \mathbf{C_c}\mathbf{X}(s) = \mathbf{C_c}(s\mathbf{I}-\mathbf{A_c})^{-1}\mathbf{B_c}U(s)$$
$$H(s) = \frac{Y(s)}{U(s)} = \mathbf{C_c}(s\mathbf{I}-\mathbf{A_c})^{-1}\mathbf{B_c}$$

State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?

$$H(s) = \frac{Y(s)}{X(s)} = \mathbf{C_c}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B_c} = \mathbf{C_c} \frac{\operatorname{adj}(s\mathbf{I} - \mathbf{A})}{|s\mathbf{I} - \mathbf{A}|} \mathbf{B_c}$$

If $|s\mathbf{I}-\mathbf{A}|=0$, H(s) is unbounded and therefore $|Y(s)| \to \infty$.

The natural frequencies are the solutions to the characteristic equation: $|s\mathbf{I}-\mathbf{A_c}|=0$

Step Response

Find the step response $\mathbf{x}_{s}(t)$ of the following matrix system equation:

$$\dot{\mathbf{x}}(t) = \mathbf{P}\mathbf{x}(t) + \mathbf{Q}u(t)$$

Assume the initial value of the step response $\mathbf{x}_{\mathbf{s}}(0) = \mathbf{0}$, and u(t)=1 for t>0.

Homogeneous equation: $\dot{\mathbf{x}}_{\mathbf{h}}(t) = \mathbf{P}\mathbf{x}_{\mathbf{h}}(t)$

$$\mathbf{x}_{\mathbf{h}}(t) = e^{\mathbf{P}t} \mathbf{\Psi}$$

Particular solution: $\mathbf{x}_{\mathbf{p}}(t) = \mathbf{\Phi}$

$$\dot{\mathbf{x}}_{\mathbf{p}}(t) = \mathbf{0} = \mathbf{P} \mathbf{\Phi} + \mathbf{Q}$$

 $\mathbf{\Phi} = -\mathbf{P}^{-1}\mathbf{Q}$ (provided that \mathbf{P} is not singular)

Initial condition: $\mathbf{x}(0) = \mathbf{\Psi} - \mathbf{P^{-1}Q} = \mathbf{0}$

$$\Psi = P^{-1} Q$$

Step response:

$$\begin{aligned} \mathbf{x}_{\mathbf{s}}(t) &= (e^{\mathbf{P}t} - \mathbf{I})\mathbf{P}^{-1}\mathbf{Q} \\ &= \mathbf{P}^{-1}(e^{\mathbf{P}t} - \mathbf{I})\mathbf{Q} \end{aligned}$$

Exponential functions play important role in solving matrix diff eq's.

Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:

$$e^{\mathbf{P}} = \mathbf{I} + \mathbf{P} + \mathbf{P}^2/2! + \mathbf{P}^3/3! + \mathbf{P}^4/4! + \cdots$$

To avoid computing infinite sums, we can diagonalize the matrix \mathbf{P} . Start with the eigenvector/eigenvalue property:

$$\mathbf{v_i} \longrightarrow \mathbf{P} \longrightarrow \lambda_i \mathbf{v_i}$$

where λ_i is the i^{th} eigenvalue and $\mathbf{v_i}$ is the i^{th} eigenvector (a column vector). Assemble the eigenvectors into an eigenvector matrix:

$$\mathbf{V} = \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} | \cdots | \mathbf{v_n} \end{bmatrix}$$

and the eigenvalues into an eigenvalue matrix:

$$\mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots \end{bmatrix}$$

If P is full rank and if none of the eigenvalues are repeated

$$\mathbf{P} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$
$$\mathbf{P} = \mathbf{V} \mathbf{P}^{\mathbf{\Lambda}} \mathbf{V}^{-1}$$

Controller Design

Many methods to optimize performance of **classical controllers** choose gains to move closed-loop poles to locations that are favorable for

- stability,
- disturbance rejection,
- noise immunity, etc.

Example: the root-locus method allows us to see all of the closed-loop pole positions that can be accessed by changing a gain K.

More powerful design methods exist for state-space controllers. For example, we can use the **pole placement** algorithm to set the closedloop pole positions ANYWHERE in the complex plane!

Pole Placement

The pole placement algorithm determines gains \mathbf{K} and K_r to locate the closed-loop poles of a state-space model **anywhere** in the complex plane.

The closed-loop poles of a state-space model are equal to the roots of its characteristic polynomial:

$$|s\mathbf{I}-(\mathbf{A}-\mathbf{B}\mathbf{K})|=\mathbf{0}$$

Fundamental theorem of algebra: an n^{th} order polynomial as n roots. **Factor theorem:** each root determines a first-order factor.

 \rightarrow characteristic polynomial can be written as a product of first-order terms: $\left|s\mathbf{I}-(\mathbf{A}-\mathbf{B}\mathbf{K})\right| = \prod_{i=1}^{n}(s-s_i) = 0$

LHS: n^{th} order polynomial in s (pole locations)

RHS: same polynomial, but coeff's in terms of desired pole locations s_i .

Pole Placement

With full-state feedback, the gain **K** can be adjusted to produce **ANY** set of *n* closed-loop poles! \rightarrow much more powerful than classical methods!

The design problem shifts ...

- from finding gains to optimize pole locations (classical view)
- to finding pole locations to optimize performance (modern view).

Unfortunately, the relation between pole locations and performance is not simple. For example, we often have **multiple objectives**.

Example: Optimizing Performance

Plant:

$$\underbrace{ k \Big(u(t) - y(t) \Big) - b \dot{y}(t) }_F = \underbrace{ m \ddot{y}(t) }_{ma}$$

Express differential equation as a first-order matrix differential equation:

$$\underbrace{\frac{d}{dt} \begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}}_{\dot{\mathbf{x}}(t)} = \underbrace{\begin{bmatrix} 0 & 1 \\ -k/m & -b/m \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} y(t) \\ \dot{y}(t) \end{bmatrix}}_{\mathbf{x}(t)} + \underbrace{\begin{bmatrix} 0 \\ k/m \end{bmatrix}}_{\mathbf{B}} u(t)$$

Decide where to put the two closed-loop poles s_i :

$$|s\mathbf{I} - (\mathbf{A} - \mathbf{B}\mathbf{K})| = \prod_{i=1}^{n} (s - s_i) = 0$$

Example: Optimizing Performance

We can place the poles anywhere - which places are best?

Example: Optimizing Performance

How do we find the "best" pole locations? Which is better: small effort or fast response?

We'd like both – but that's not generally feasible.

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)?¹

 1 adapted from Brian Douglas (MATLAB) and Christopher Lum (U Washington).

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)?

- How much does it cost?
- How long does it take?

•	mode	dollars	time
Ż.	walk	\$0.00	3h 50m
BLUEbikes	bike	\$10.00	1h 4m
	subway/bus	\$2.40	1h 2m
Uber	auto	\$38.33	46m

It's easy to optimize either objective. But we'd like a solution that costs nothing and takes no time \rightarrow not feasible.

How do we find the best feasible solution? What does "best" even mean?

Prioritizing Mixed Objectives with a Cost Function

More generally, we can define a **cost function** to assign a real-valued penalty to all possible scenarios.

• cost: 1 point per dollar + 1/10 point per minute

	mode	dollars	time	cost
Ż	walk	\$0.00	3h 50m	23
BLUE bikes	bike	\$10.00	1h 4m	16.4
	subway/bus	\$2.40	1h 2m	8.6
Uber	auto	\$38.33	46m	42.93

Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on x(t) or peak value of y(t).

A better cost function might consider entire time functions (x(t) and y(t)).

Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors: $\int (\text{desired-measured})^2 dt$.

Squaring penalizes both positive and negative errors, and it's mathematically tractible.

Quadratic Cost Functions

Define a cost function J that depends on the integral of the squares of the elements of $\mathbf{x}(t)$ and $\mathbf{u}(t)$:

$$J = \int_0^\infty \left(\mathbf{x}^{\mathbf{T}}(t) \, \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^{\mathbf{T}}(t) \, \mathbf{R} \mathbf{u}(t) \right) dt$$

where \mathbf{Q} and \mathbf{R} are matrix constants that we can choose so as to weight errors in each component of $\mathbf{x}(t)$ and $\mathbf{u}(t)$ differently.

The goal will be to find the gain matrices **K** and K_r to minimize J.

Linear Quadratic Regulator (LQR¹)

We want to find the gain matrix \boldsymbol{K} that minimizes the cost function

$$J = \int_0^\infty \left(\mathbf{x}^{\mathbf{T}}(t) \, \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^{\mathbf{T}}(t) \, \mathbf{R} \mathbf{u}(t) \right) dt$$

where $\mathbf{u}(t)$ and $\mathbf{x}(t)$ are related

- by the state transition equation: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$ and
- by the feedback constraint (for homogeneous case): $\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$.

The "optimal" $\,K$ can be shown to be given by

 $\mathbf{K} = \mathbf{R^{-1}}\mathbf{B^T}\mathbf{S}$

where S is the symmetric $n \times n$ solution to the algebraic Riccati equation:

$$\mathbf{A}^{T}\mathbf{S} + \mathbf{S}\mathbf{A} - \mathbf{S}\mathbf{B}\mathbf{R}^{-1}\mathbf{B}^{T}\mathbf{S} + \mathbf{Q} = \mathbf{0}$$

¹ quadratic regulation of a linear system

LQR Solution

Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices A and B and the LQR weights Q and R, the following Python code

- > from control import lqr
- > K,S,E = lqr(A,B,Q,R)

and MATLAB code

> K,S,E = lqr(A,B,Q,R);

finds the optimal solutions and returns

- K: state feedback gains,
- S: solution to the algebraic Riccati equation, and
- E: eigenvalues of the resulting closed-loop system.

Example: Two-Spring System

A plant consists of two springs and two masses. Use the input $u(t) = x_0(t)$ to move the bottom mass to the desired location $x_2(t) = y_d(t)$.

A classical controller for this problem has the following form.

To solve this classical control problem, we must

- find the equations of motion for the plant (the two-spring system) and
- express those equations in terms of a transfer function.

Check Yourself

Which plot (if any) shows the poles of the two-spring system?

All of the elements in the two-spring system are passive – they cannot create energy. Therefore none of the poles can be in the right half-plane. Therefore the answer cannot be 2. Intrinsic losses also prevent solution 3.

There are 4 poles. The force exerted by a spring is determined by the displacements of its endpoints. The force on a mass is proportional to acceleration, which is the second derivative of displacement and therefore scales as s^2 in frequency. Since there are two masses, the number of characteristic equation will be quartic in s.

Thus the answer is 1.

Two-Spring System

Equations of motion.

$$f_{m1} = m\ddot{x}_1(t) = k\Big(x_0(t) - x_1(t)\Big) - k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_1(t)$$

$$f_{m2} = m\ddot{x}_2(t) = k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_2(t)$$

Transfer function:

$$H(s) = \frac{X_2(s)}{X_0(s)} = \frac{k^2}{(s^2m + sb + 2k)(s^2m + sb + k) - k^2}$$

Try proportional control.

$$y_d(t) \longrightarrow e(t)$$
 K_p $u(t) = x_0(t)$ $H(s)$ $y(t) = x_2(t)$

The feedback system is stable for only a small range of gains: $K_p < 2.7$

Step responses (mass m = 1, stiffness k = 2, damping b = 1.4):

Slow convergence and large oscillatory overshoots. Why such poor behavior?

Root Locus: As K_p increases, the lower and higher frequency poles converge with no change in damping, then split and approach asymptotic trajectories at angles of $\pm \pi/4$ and $\pm 3\pi/4$. Unstable when poles enter right half-plane.

Good explanation of what happened. Try proportional plus derivative control.

Proportional plus derivative performance is only slightly better.

Step responses:

Somewhat smaller overshoot, but still slow convergence.

Root Locus: Increase K_p while holding $K_d = K_p/0.7$. Derivative term adds a zero and changes the asymptotic behavior, but closed-loop system still goes unstable.

Good explanation of what happened – but how do we make it faster? Try state-space approach.

Check Yourself

Find **A**, **B**, and **C** so that $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}u$ and $y = \mathbf{C}\mathbf{x}$.

How many non-zero entries are in A?

$$f_{m1} = m\ddot{x}_1(t) = k\Big(x_0(t) - x_1(t)\Big) - k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_1(t)$$

$$f_{m2} = m\ddot{x}_2(t) = k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_2(t)$$

State-Space Description

Equations of motion:

$$f_{m1} = m\ddot{x}_1(t) = k\Big(x_0(t) - x_1(t)\Big) - k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_1(t)$$

$$f_{m2} = m\ddot{x}_2(t) = k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_2(t)$$

Four state variables (two displacements and their velocities):

$$\frac{d}{dt} \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} -\frac{b}{m} & -\frac{2k}{m} & 0 & \frac{k}{m} \\ 1 & 0 & 0 & 0 \\ 0 & \frac{k}{m} & -\frac{b}{m} & -\frac{k}{m} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} \frac{k}{m} \\ 0 \\ 0 \\ 0 \end{bmatrix} x_0(t)$$

< -> _____

$$y(t) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix}$$

State-Space Model

How many non-zero entries are in A? 8

$$\mathbf{u}(t) \longrightarrow \mathbf{B} \longrightarrow \mathbf{x}(t) \longrightarrow \mathbf{C} \longrightarrow y(t)$$

$$\mathbf{A} = \begin{bmatrix} -\frac{b}{m} & -\frac{2k}{m} & 0 & \frac{k}{m} \\ 1 & 0 & 0 & 0 \\ 0 & \frac{k}{m} & -\frac{b}{m} & -\frac{k}{m} \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} \frac{k}{m} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{C} = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{x}(t) = \begin{bmatrix} v_1(t) \\ x_1(t) \\ v_2(t) \\ x_2(t) \end{bmatrix} \qquad u(t) = x_0(t) \qquad y(t) = x_2(t)$$

A state-space **controller** can then be expressed as follows.

How do we find **K** and K_r ?

A state-space **controller** can then be expressed as follows.

Find **K** with **pole placement**:

K = place(A,B,[poles])

or LQR:

K = lqr(A,B,Q,R) where Q = diag([1,1,1,1]) and R = 1

How to find K_r ?

 K_r does not affect stability. Choose K_r to minimize steady-state error.

Find the steady-state values of x:

$$\dot{\mathbf{x}} = \mathbf{0} = (\mathbf{A} - \mathbf{B}\mathbf{K})\mathbf{x} + \mathbf{B}K_r y_d$$

$$\mathbf{x} = -(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}K_r y_d$$

We want $y = y_d$:

$$y = \mathbf{C}\mathbf{x} = -\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}K_r y_d$$

Divide out y_d (under the assumption that $y = y_d \neq 0$):

$$K_r = \frac{-1}{\mathbf{C}(\mathbf{A} - \mathbf{B}\mathbf{K})^{-1}\mathbf{B}}$$

Try LQR.

Start with flat parameters $\mathbf{Q} = \text{diag}([1,1,1,1])$ and $\mathbf{R} = [[1]]$.

Convergence is slow but monotonic. Can we make it faster?

Try different values of ${\bf Q}$ and ${\bf R}.$

Try different values of ${\bf Q}$ and ${\bf R}.$

Increasing all values of \mathbf{Q} doesn't have a big effect on positions x_1 or x_2 . Has big effect on effort u(t).

Try different values of ${\bf Q}$ and ${\bf R}.$

Try different values of ${\bf Q}$ and ${\bf R}.$

Reducing weight on $v_1(t)$ has bigger effect than reducing weight on $v_2(t)$. Reducing weight on both velocities speeds the displacements most.

Try different values of ${\bf Q}$ and ${\bf R}.$

Try different values of ${\bf Q}$ and ${\bf R}.$

Weighting just the output x_2 lets $x_1(t)$ get very large. Weighting just displacement x_1 works surprisingly well.

Try different values of ${\bf Q}$ and ${\bf R}.$

Try different values of ${\bf Q}$ and ${\bf R}.$

Increasing weight on x_1 improves convergence of $x_2(t)$ but increases effort.

Summary

State-space control with full-state feedback offers technical and intuitive advantages over the most common types of classical control.

The pole placement algorithm allows one to specify the locations of all of the closed-loop poles.

LQR provides intuitive refinement of feasible solutions to a control problem.