
6.3100: Dynamic System Modeling and Control Design

Linear Quadratic Regulator

November 13, 2024

Modern Control

State-Space Approach

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Plant: state matrix A, input vector B, and output vector C:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Feedback is characterized by a feedback vector K and input scaler Kr:

u(t) = Kryd(t)−Kx(t)
Combine to obtain closed-loop characterization:

ẋ(t) =
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)

From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

ẋ(t) = Acx(t)+Bcu(t)
Consider the input u(t) and state x(t) at a particular complex frequency s:

u(t) = U(s)est and x(t) = X(s)est

Find H(s) at the same complex frequency.

sX(s)est = AcX(s)est +BcU(s)est

sX(s) = AcX(s) +BcU(s)

(sI−Ac)X(s) = BcU(s)

X(s) = (sI−Ac)−1BcU(s)

Y (s) = CcX(s) = Cc(sI−Ac)−1BcU(s)

H(s) = Y (s)
U(s) = Cc(sI−Ac)−1Bc

State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?

H(s) = Y (s)
X(s) = Cc(sI−A)−1Bc = Cc

adj(sI−A)
|sI−A|

Bc

If |sI−A| = 0, H(s) is unbounded and therefore |Y (s)| → ∞.

The natural frequencies are the solutions to the characteristic equation:∣∣∣s I−Ac

∣∣∣ = 0

Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

xh(t) = ePt	

Particular solution: xp(t) = �

ẋp(t) = 0 = P�+Q

� = −P−1Q (provided that P is not singular)

Initial condition: x(0) = 	− P−1Q = 0

	 = P−1Q

Step response:

xs(t) = (ePt − I)P−1Q

= P−1(ePt − I)Q

Exponential functions play important role in solving matrix diff eq’s.

Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·
To avoid computing infinite sums, we can diagonalize the matrix P.

Start with the eigenvector/eigenvalue property:

Pvi λivi

where λi is the ith eigenvalue and vi is the ith eigenvector (a column vector).

Assemble the eigenvectors into an eigenvector matrix:

V =
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]

and the eigenvalues into an eigenvalue matrix:

� =

λ1
λ2

. . .


If P is full rank and if none of the eigenvalues are repeated

P = V�V−1

eP = Ve�V−1

Controller Design

Many methods to optimize performance of classical controllers choose

gains to move closed-loop poles to locations that are favorable for

• stability,

• disturbance rejection,

• noise immunity, etc.

Example: the root-locus method allows us to see all of the closed-loop pole

positions that can be accessed by changing a gain K.

More powerful design methods exist for state-space controllers.

For example, we can use the pole placement algorithm to set the closed-

loop pole positions ANYWHERE in the complex plane!

Pole Placement

The pole placement algorithm determines gains K and Kr to locate the

closed-loop poles of a state-space model anywhere in the complex plane.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:∣∣∣sI−(A−BK)
∣∣∣ = 0

Fundamental theorem of algebra: an nth order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

→ characteristic polynomial can be written as a product of first-order terms:∣∣∣sI−(A−BK)
∣∣∣ =

n∏
i=1

(s−si) = 0

LHS: nth order polynomial in s (pole locations)

RHS: same polynomial, but coeff’s in terms of desired pole locations si.

Pole Placement

With full-state feedback, the gain K can be adjusted to produce ANY set

of n closed-loop poles! → much more powerful than classical methods!

The design problem shifts ...

• from finding gains to optimize pole locations (classical view)

• to finding pole locations to optimize performance (modern view).

Unfortunately, the relation between pole locations and performance is not

simple. For example, we often have multiple objectives.

Example: Optimizing Performance

u(t)

y(t)
Plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Express differential equation as a first-order matrix differential equation:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

Decide where to put the two closed-loop poles si:

|sI−(A−BK)| =
n∏

i=1
(s−si) = 0

Example: Optimizing Performance

We can place the poles anywhere – which places are best?

Large negative poles → fast response.
√

Large negative poles → large effort. X

Example: Optimizing Performance

How do we find the “best” pole locations?

Which is better: small effort or fast response?

We’d like both – but that’s not generally feasible.

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)? 1

• How much does it cost?

• How long does it take?

mode dollars time cost

walk $0.00 3h 50m

bike $10.00 1h 4m

subway/bus $2.40 1h 2m

auto $38.33 46m

1adapted from Brian Douglas (MATLAB) and Christopher Lum (U Washington).

Multiple Objectives

Find best way to go from 77 Mass Ave to Lexington Green (12 miles)? 1

• How much does it cost?

• How long does it take?

mode dollars time cost

walk $0.00 3h 50m

bike $10.00 1h 4m

subway/bus $2.40 1h 2m

auto $38.33 46m

It’s easy to optimize either objective. But we’d like a solution that costs

nothing and takes no time → not feasible.

How do we find the best feasible solution? What does “best” even mean?

Prioritizing Mixed Objectives with a Cost Function

More generally, we can define a cost function to assign a1real-valued

penalty to all possible scenarios.

• cost: 1 point per dollar + 1/10 point per minute

mode dollars time cost

walk $0.00 3h 50m 23

bike $10.00 1h 4m 16.4

subway/bus $2.40 1h 2m 8.6

auto $38.33 46m 42.93

Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on x(t) or peak value of y(t).
∫

12 dt

A better cost function might consider entire time functions (x(t) and y(t)).

Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors:
∫

(desired-measured)2 dt.

Squaring penalizes both positive and negative errors,

and it’s mathematically tractible.

Quadratic Cost Functions

Define a cost function J that depends on the integral of the squares of the

elements of x(t) and u(t):

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where Q and R are matrix constants that we can choose so as to weight

errors in each component of x(t) and u(t) differently.

The goal will be to find the gain matrices K and Kr to minimize J .

Linear Quadratic Regulator (LQR1)

We want to find the gain matrix K that minimizes the cost function

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint (for homogeneous case): u(t) = −Kx(t).

The “optimal” K can be shown to be given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

quadratic regulation of a linear system1

LQR Solution

Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices A and B and the LQR weights Q and R,

the following Python code

> from control import lqr
> K,S,E = lqr(A,B,Q,R)

and MATLAB code

> K,S,E = lqr(A,B,Q,R);

finds the optimal solutions and returns

• K: state feedback gains,

• S: solution to the algebraic Riccati equation, and

• E: eigenvalues of the resulting closed-loop system.

Example: Two-Spring System

A plant consists of two springs and two masses. Use the input u(t) = x0(t)
to move the bottom mass to the desired location x2(t) = yd(t).

yd(t)

x0(t)

x1(t)

x2(t)

Classical Control

A classical controller for this problem has the following form.

+ K(s)
−

two-spring
system

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

To solve this classical control problem, we must

• find the equations of motion for the plant (the two-spring system) and

• express those equations in terms of a transfer function.

Check Yourself

x0(t)

x1(t)

x2(t)

Which plot (if any) shows the poles of the two-spring system?

Re

Im1.

Re

Im2.

Re

Im3.

Re

Im4.

Check Yourself

Which plot (if any) shows the poles of the two-spring system?

Re

Im1.

Re

Im2.

Re

Im3.

Re

Im4.

All of the elements in the two-spring system are passive – they cannot

create energy. Therefore none of the poles can be in the right half-plane.

Therefore the answer cannot be 2. Intrinsic losses also prevent solution 3.

There are 4 poles. The force exerted by a spring is determined by the

displacements of its endpoints. The force on a mass is proportional to

acceleration, which is the second derivative of displacement and therefore

scales as s2 in frequency. Since there are two masses, the number of

characteristic equation will be quartic in s.

Thus the answer is 1.

Check Yourself

x0(t)

x1(t)

x2(t)

Which plot (if any) shows the poles of the two-spring system? 1

Re

Im1.

Re

Im2.

Re

Im3.

Re

Im4.

Two-Spring System

Equations of motion.

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t)−x1(t)

)
− k
(
x1(t)−x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t)−x2(t)

)
− bẋ2(t)

Transfer function:

H(s) = X2(s)
X0(s) = k2

(s2m+ sb+ 2k)(s2m+ sb+ k)− k2

Classical Control

Try proportional control.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

The feedback system is stable for only a small range of gains: Kp<2.7

Step responses (mass m = 1, stiffness k = 2, damping b = 1.4):

Slow convergence and large oscillatory overshoots.

Why such poor behavior?

Classical Control

Root Locus: As Kp increases, the lower and higher frequency poles con-

verge with no change in damping, then split and approach asymptotic

trajectories at angles of ±π/4 and ±3π/4. Unstable when poles enter right

half-plane.

Re(s)

Im(s)

Good explanation of what happened.

Try proportional plus derivative control.

Classical Control

Proportional plus derivative performance is only slightly better.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses:

Somewhat smaller overshoot, but still slow convergence.

Classical Control

Root Locus: Increase Kp while holding Kd = Kp/0.7. Derivative term adds

a zero and changes the asymptotic behavior, but closed-loop system still

goes unstable.

Re(s)

Im(s)

Good explanation of what happened – but how do we make it faster?

Try state-space approach.

Check Yourself

Find A, B, and C so that ẋ = Ax+Bu and y = Cx.

How many non-zero entries are in A?

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t)− x1(t)

)
− k
(
x1(t)− x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t)− x2(t)

)
− bẋ2(t)

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

State-Space Description

Equations of motion:

fm1 = mẍ1(t) = k
(
x0(t)− x1(t)

)
− k
(
x1(t)− x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t)− x2(t)

)
− bẋ2(t)

Four state variables (two displacements and their velocities):

d

dt


v1(t)
x1(t)
v2(t)
x2(t)

 =


− b

m −2k
m 0 k

m

1 0 0 0
0 k

m − b
m − k

m

0 0 1 0



v1(t)
x1(t)
v2(t)
x2(t)

+


k
m

0
0
0

x0(t)

y(t) = [0 0 0 1]


v1(t)
x1(t)
v2(t)
x2(t)



State-Space Model

How many non-zero entries are in A? 8

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

A =


− b

m −2k
m 0 k

m

1 0 0 0
0 k

m − b
m − k

m

0 0 1 0

 B =


k
m

0
0
0

 C = [0 0 0 1]

x(t) =


v1(t)
x1(t)
v2(t)
x2(t)

 u(t) = x0(t) y(t) = x2(t)

State-Space Controller

A state-space controller can then be expressed as follows.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

How do we find K and Kr?

State-Space Controller

A state-space controller can then be expressed as follows.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Find K with pole placement:

K = place(A,B,[poles])
or LQR:

K = lqr(A,B,Q,R) where Q = diag([1,1,1,1]) and R = 1

How to find Kr?

State-Space Controller

Kr does not affect stability. Choose Kr to minimize steady-state error.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Find the steady-state values of x:

ẋ = 0 = (A−BK)x+BKryd

x = −(A−BK)−1BKryd

We want y = yd:

y = Cx = −C(A−BK)−1BKryd

Divide out yd (under the assumption that y = yd 6= 0):

Kr = −1
C(A−BK)−1B

State-Space Control

Try LQR.

Start with flat parameters Q = diag([1, 1, 1, 1]) and R = [[1]].

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Convergence is slow but monotonic. Can we make it faster?

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

Increasing all values of Q doesn’t have a big effect on positions x1 or x2.

Has big effect on effort u(t).

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

Reducing weight on v1(t) has bigger effect than reducing weight on v2(t).

Reducing weight on both velocities speeds the displacements most.

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

Weighting just the output x2 lets x1(t) get very large.

Weighting just displacement x1 works surprisingly well.

State-Space Control

Try different values of Q and R.

State-Space Control

Try different values of Q and R.

Increasing weight on x1 improves convergence of x2(t) but increases effort.

Summary

State-space control with full-state feedback offers technical and intuitive

advantages over the most common types of classical control.

The pole placement algorithm allows one to specify the locations of all of

the closed-loop poles.

LQR provides intuitive refinement of feasible solutions to a control problem.

