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Recap: General Form of First Order System

The general form of a first order DT system:

y[n] = λy[n− 1] + bx[n− 1] (#1)

Notes on the general form:

Our goal is to solve for y[n]

x[n] is the input or driving function we set

λ is the natural frequency

b is a multiplicative constant
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Recap: ZSR of First-Order DT System: Finding y[n]

We studied the case when x[n] = 1 for all n ≥ 0 and y[0] = 0.

This is known as the Zero State Response (ZSR)

We solved for y[n] to obtain:

y[n] =
b

1− λ
(1− λn).

In particular, we found that y[n] converges to a finite value as n→∞
when −1 < λ < 1.
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Linearity, Time Invariance, Superposition

Generalizing to Arbitrary Inputs Signals

Our first-order difference equations have two convenient properties:
linearity and time-invariance.

Linearity:

If xa[n]→ ya[n] and xb[n]→ yb[n], then
Axa[n] +Bxb[n]→ Aya[n] +Byb[n].

Time Invariance:

If x[n]→ y[n], then x[n− n0]→ y[n− n0].

Here, A,B are constants, “→” means “leads to,” and n0 is an
integer-valued length of time.
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Linearity, Time Invariance, Superposition

Check Yourself: Defining a Complex Driving Function

Consider input signal x1[n] on the left and a more complex input x2[n]
on the right:

5 10 15

−2

2
x1[n]

5 10 15

−2

2
x2[n]

Define x2[n] in terms of rescaled and time-shifted x1[n] signals.

x2[n] =?
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Linearity, Time Invariance, Superposition

Check Yourself: Defining a Complex Driving Function

Consider input signal x1[n] on the left and a more complex input x2[n]
on the right:
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x1[n]
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x2[n]

Define x2[n] in terms of rescaled and time-shifted x1[n] signals.

x2[n] = 2x1[n− 3]− 4x1[n− 8]
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Revisiting Feedforward Control

Recall: Feedforward Control

Let’s return to the idea of feedforward control:

Plant
Td[n] Tm[n]

We can analyze the feedforward controller:

FF controller: u[n] = KffTd[n],

Plant:
Tm[n]− Tm[n− 1]

∆T
= γu[n− 1].
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Revisiting Feedforward Control

Feedforward First Order DT System

For our feedforward system, we arrive at the following equation:

Tm[n]− Tm[n− 1]

∆T
= γKffTd[n− 1].

Rearranging, we have:

Tm[n] = Tm[n− 1] + ∆TγKffTd[n− 1].

What is our system’s natural frequency? What will be its steady-state
behavior?
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Revisiting Feedforward Control

Feedforward System’s Steady-state Behavior

Comparing the general first order DT system with our result,

Tm[n] = Tm[n− 1] + ∆TγKffTd[n− 1],

we can see that the natural frequency is λ = 1.

Without any feedback control, this system is unstable and likely will
not perform very well.

However, this is not the end of the story for feedforward control!
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Control System with Loss

Recall: Choosing Kp for Stability

At the end of last lecture, we analyzed our first order DT system for
our system with feedback:

Tm[n] = (1− γ∆TKp)Tm[n− 1] + γ∆TKpTd[n− 1].

Comparing this result with the general first order DT system, we found
that we need,

−1 < λ < 1,

−1 < 1− γ∆TKp < 1,

0 < Kp <
2

γ∆T
,

to guarantee a stable system.
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Control System with Loss

Towards a “Realistic” Controller

Our old plant equation is given by:

Tm[n] = Tm[n− 1] + ∆Tγu[n− 1].

Realistically, there are other environmental factors that effect our
plant. We can add another term in the equation:

Tm[n] = Tm[n− 1] + ∆Tγu[n− 1]−∆TβTm[n− 1].

Here, β ≥ 0 is a constant relating heat loss to the instantaneous
temperature Tm[n].
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Control System with Loss

Proportional Controller for Plant with Loss

With this system, we can implement the same proportional feedback
controller:

u[n] = Kp(Td[n]− Tm[n]).

The system equation becomes:

Tm[n] = (1− γ∆TKp−∆Tβ)Tm[n− 1] + γ∆TKpTd[n− 1].

Note that we have a new term −∆TβTm[n− 1], which changes our
selection of Kp.
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Control System with Loss

Stability of System with Loss

Our system with loss is still a first-order DT system and we can
analyze the stability in the same way:

−1 < λ < 1,

−1 < 1− γ∆TKp −∆Tβ < 1,

−β
γ

< Kp <
2− β∆T

γ∆T
.

Choosing a value of Kp within this range guarantees stability.
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Control System with Loss

Convergence of System with Loss

Suppose we want our system to converge to a steady state value as
quickly as possible. As before, we can set the natural frequency λ = 0:

λ = (1− γKp∆T −∆β) = 0.

Solving for Kp, we obtain:

Kp =
1−∆Tβ

γ∆T
.

This analysis yields a Kp that is optimal with respect to convergence
speed. However, there are other factors to consider...
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Control System with Loss

Steady-State Error with Loss

Let’s calculate the steady-state error. We’ll define the error term as:

e[n] = Td[n]− Tm[n].

Our goal is to find e[∞] = limn→∞ e[n].

We can rearrange the system equation as:

Tm[n] = (1− γKp∆T −∆Tβ)Tm[n− 1] + γ∆TKpTd[n− 1]

e[n] = (1− γKp∆T −∆Tβ)︸ ︷︷ ︸
λ

e[n− 1] + ∆TβTd[n− 1].

Thus, as n approaches infinity, we obtain;

e[∞] = λe[∞] + ∆TβTd[∞]⇒ e[∞] =
∆TβTd[∞]

1− λ
.
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Control System with Loss

Nonzero Steady-State Error!

Our steady-state error is e[∞] = ∆TβTd[∞]
1−λ .

In particular, as long as β 6= 0, our control system will have a
steady-state error!

In many realistic situations, there is no solution that optimizes
every aspect of the control system.

Prioritizing faster convergence vs. small steady-state error is a
design choice.

Can we design a new controller that removes the steady-state error?
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Control System with Loss

Combination Feedforward-and-Proportional Controller

Let’s define a new controller as:

u[n] = KffTd[n]︸ ︷︷ ︸
feedforward

+Kp(Td[n]− Tm[n])︸ ︷︷ ︸
feedback

.

Now, we have 2 different gains to choose: Kff and Kp. Our system
equation becomes:

Tm[n] = (1− γKp∆T −∆Tβ)Tm[n− 1] + γ∆T (Kp +Kff )Td[n− 1].

What impact does picking Kp,Kff have on the steady-state error of
this system?
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Control System with Loss

Computing Steady-State Error

Recall that we can define an error signal e[n] = Td[n]− Tm[n]. We can
rewrite our system equation as:

Tm[n] = (1− γKp∆T −∆Tβ)Tm[n− 1] + γ∆T (Kp +Kff )Td[n− 1],

e[n] = (1− γKp∆T −∆Tβ)︸ ︷︷ ︸
λ

e[n− 1] + (−γKff + β)∆T Td[n− 1],

⇒ e[n] = λe[n− 1] + (−γKff + β)∆T Td[n− 1].
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Control System with Loss

Computing Steady-State Error

Now, the steady-state error becomes:

e[∞] = λe[∞] + (−γKff + β)∆TTd[∞],

⇒ e[∞] =
(−γKff + β)∆TTd[∞]

1− λ
.

Can we make the steady-state error e[∞] = 0? Yes!

We can set Kff = β
γ . In the second part of Lab 1, we’ll see how to

compute β, γ analytically.
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