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Observers

Last time, we introduced the notion of an observer, which is a model of

a plant that is used to improve performance of a controller.
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x(t)ẋ(t)

u(t)

+B

∫
C

A
simulation

+B

∫
C

A
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Observers

We embed both the plant and observer in state-space controllers, so that

the simulation can provide estimates of the state (x̂(t)) and input (û(t)).
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Observers

If feedback from all of the states in x(t) is not possible ...
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Observers

... we can substitute the simulated states x̂(t) for the missing states x(t).

Similarly, we can substitute û(t) for u(t) as well.
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Observers

... we can substitute the simulated states x̂(t) for the missing states x(t).

Similarly, we can substitute û(t) for u(t) as well.
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Observers

Unfortunately the resulting system is feedforward. It’s utility depends

critically on the accuracy of the match between the plant and observer.
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Observers

Fortunately, we can use feedback to measure and correct simulation errors!

Calculate the difference between y(t) and ŷ(t).

Then use that signal (times L) to correct ˙̂x(t).
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Observers

Analyze by finding matrix expressions for the derivatives of the states.

Plant dynamics: ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
Simulation dynamics: ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t)−ŷ(t))
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Observers

Combined dynamics of the plant and observer.

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L

(
y(t)−ŷ(t)

)
Define e(t) to be the difference between the plant and simulation states:

e(t) = x(t) − x̂(t)
Subtract ˙̂x(t) from ẋ(t) to find the derivative of e(t):

ė(t) = Ae(t) − L
(
y(t)−ŷ(t)

)
= Ae(t) − LCe(t)

Append the ẋ(t) and ė(t) to make a new combined state vector:[
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Observers

Combined dynamics of the plant and observer.[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

The poles of this system are the roots of its characteristic equation:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ = 0

Because the evolution matrix has block triangular form, the characteristic

equation can be factored into two parts:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ =
∣∣∣sI− (A−BK)

∣∣∣×
∣∣∣sI− (A−LC)

∣∣∣ = 0

and the poles of the augmented system are the union of the poles of the

plant and simulation dynamics.

Furthermore, K can be chosen to optimize A−BK and

L can be chosen to optimize A−LC.

We’ve seen the first part of this problem before!



Linear Quadratic Regulator (LQR) – Redux!

The LQR method minimizes a cost function J that weighs the squares of

the state variables x(t) and input u(t).

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint: u(t) = −Kx(t).

and Q and R represent weights.

The “optimal” K is given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0



Linear Quadratic Regulator (LQR) – Double Redux!

The LQR method minimizes a cost function J ′ that weighs the squares of

observer state errors ê(t) = x(t)−x̂(t) and observer output errors y(t)−ŷ(t).

J ′ =
∫ ∞

0

(
e(t)TQe(t) + (y(t)−ŷ(t))T R (y(t)−ŷ(t)

)
dt

where (y(t)−ŷ(t)) and e(t) are related

• by a state transition equation: ė(t) = Ae(t) − L(y(t) − ŷ(t)) and

• by the feedback constraint: y(t)−ŷ(t) = Ce(t).

and Q and R represent weights.

The “optimal” L is given by

LT = R−1CS

where S is the symmetric n×n solution to the algebraic Riccati equation:

AS+ SAT − SCTR−1CS+Q = 0



Choosing K and L

Since optimizing K and L can be cast into problems with the same form,

the optimizations can be solved using the same methods.

K = place(A,B,[poles])
L = transpose(place(transpose(A),transpose(C),[poles]))

or

K = lqr(A,B,Qk,Rk)
L = transpose(lqr(transpose(A),transpose(C),Ql,Rl))



Observers

Example: propeller arm (lab 6)

θ(t) controller

u(t)

−u(t)

Model of plant:

γa + 1
s

1
s

1
s−

−βu(t) θ(t)
ω(t)a(t)

γa = 55; β = −14

d

dt

 θω
a

 =

 0 1 0
0 0 1
0 0 β


︸ ︷︷ ︸
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a

+

 0
0

−βγa


︸ ︷︷ ︸

B

u(t); y(t) = [ 1 0 0 ]︸ ︷︷ ︸
C

 θω
a





Observers

Substitute A, B, and C into the observer framework.

Plant dynamics: ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
Simulation dynamics: ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t)−ŷ(t))
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Choosing Gains

Effect of increasing Qk’s.

Responses of plant and observer match. Why?

Responses for different Qk’s match. Why?



Choosing Gains

Effect of increasing Qk[0], Qk[1], and Qk[2] – one at a time.

Which column shows

Qk:100,1,1? Qk:1,100,1? Qk:1,1,100?



Choosing Gains

Effect of increasing Ql’s.

Responses of plant and observer match. Why?

Responses for different Ql’s match. Why?



Observer Mismatch

What if the observer does not match the plant?

What if the red B is different from the green B?
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Choosing Gains

Effect of increasing Qk’s when γa for plant is half that for observer.

Increasing K’s by increasing Qk’s has little effect on mismatch. Why?



Choosing Gains

Effect of increasing Ql’s when γa for plant is half that for observer.

Increasing L’s by increasing Ql’s improves match (especially for θ(t)).



Choosing Gains

Effect of increasing Ql’s one at a time.

Better to assess L using differences between plant and observer variables.



Choosing Gains

To choose K, we minimize a cost function J that weighs the squares of

the state variables x(t) and input u(t):

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

The most effective K is the one that minimizes the squared values of x(t)
and u(t).

To choose L, we minimize a cost function J ′ that weighs the squares of

observer state errors e(t) = x(t) − x̂(t) and observer output errors y(t)−ŷ(t):

J ′ =
∫ ∞

0

(
e(t)TQe(t) + (y(t)−ŷ(t))T R (y(t)−ŷ(t)

)
dt

The most effective L is the one that minimizes the squared values of e(t)
and y(t) − ŷ(t).



Choosing Gains

Effect of increasing Ql’s one at a time.

Which column shows

Ql:100,0,0? Ql:0,100,0? Ql:0,0,100?



Next Time

No lecture on Wednesday. No office hours on Wednesday.

Happy Thanksgiving!


