6.3100: Dynamic System Modeling and Control Design

Observer Design

November 25, 2024



Observers

Last time, we introduced the notion of an observer, which is a model of
a plant that is used to improve performance of a controller.

O e LI e e e o M T

A |—

_.I_. 2 l_ N e ST
L

simulation




Observers

We embed both the plant and observer in state-space controllers, so that
the simulation can provide estimates of the state (X(¢)) and input (u(t)).

yd(t) -T—» Kr

e e Ea gl

u(t)
e D
A |+
plant
«—

x(t
L

| K [o—




Observers

If feedback from all of the states in x(t) is not possible ...
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Observers

. we can substitute the simulated states X(¢) for the missing states x(t).
Similarly, we can substitute u(t) for u(t) as well.
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Observers

. we can substitute the simulated states X(¢) for the missing states x(t).
Similarly, we can substitute u(t) for u(t) as well.
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Observers

Unfortunately the resulting system is feedforward. It's utility depends
critically on the accuracy of the match between the plant and observer.
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Observers

Fortunately, we can use feedback to measure and correct simulation errors!
Calculate the difference between y(t) and 37( )
Then use that signal (times L) to correct x(¢
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Observers

Analyze by finding matrix expressions for the derivatives of the states.

Plant dynamics: x(t) = Ax( ) BKx(t )+ BK,y,(t)
Simulation dynamics: X(t) = — BKX(t) + BK,y4(t) + L(y(t)—75(t))
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Observers

Combined dynamics of the plant and observer.
x(t) = Ax(t) — BKX(t) + BK,y4(t)
X(t) = AR(t) — BK(t) + BE,ya(t) + L (y(1)-5() )
Define e(t) to be the difference between the plant and simulation states:

e(t) = x(t) — x(t)

Subtract X(t) from x(t) to find the derivative of e(t):

6(t) = Ae(t) — L(y()—7(t) ) = Ae(t) — LCe(t)

Append the x(t) and é(t) to make a new combined state vector:
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Observers

Combined dynamics of the plant and observer.
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The poles of this system are the roots of its characteristic equation:
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Because the evolution matrix has block triangular form, the characteristic

equation can be factored into two parts:
A-BK
‘sl— [ o A LC] ) (sl— (A— BK)‘ ‘51— (A-LC)| =

and the poles of the augmented system are the union of the poles of the
plant and simulation dynamics.

Furthermore, K can be chosen to optimize A—BK and
L can be chosen to optimize A—LC.

We've seen the first part of this problem before!



Linear Quadratic Regulator (LQR) — Redux!

The LQR method minimizes a cost function J that weighs the squares of
the state variables x(¢) and input u(t).

J = /0 h (xT(t) Qx(t) +u () Ru(t))dt

where u(t) and x(t) are related
e by the state transition equation: x(t) = Ax(t) + Bu(t) and
e by the feedback constraint: u(t) = —Kx(¢).

and Q and R represent weights.

The “optimal” K is given by
K =R 'BTS

where S is the symmetric nxn solution to the algebraic Riccati equation:
ATS+SA —-SBR!BTS+Q=0



Linear Quadratic Regulator (LQR) — Double Redux!

The LQR method minimizes a cost function J’ that weighs the squares of

observer state errors €(t) = x(t)—X(t) and observer output errors y(t)—y(t).

J = / " (e Qe(t) + ()TN R (y(0)-3(0) )t
0

where (y(t)—y(t)) and e(t) are related

e by a state transition equation: é(t) = Ae(t) — L(y(t) — y(t)) and
e by the feedback constraint: y(¢)—y(t) = Ce(t).

and Q and R represent weights.

The “optimal” L is given by
LT =R'CS

where S is the symmetric nxn solution to the algebraic Riccati equation:
AS +SAT —-SCTR'CS+Q =0



Choosing K and L

Since optimizing K and L can be cast into problems with the same form,
the optimizations can be solved using the same methods.

K = place(A,B, [poles])

L = transpose(place(transpose(A),transpose(C), [poles]))
or

K = 1gr(A,B,Qk,Rk)

L = transpose(lqr(transpose(A),transpose(C),Q1l,R1))



Observers

Example: propeller arm (lab 6)
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Observers

Substitute A, B, and C into the observer framework.

Plant dynamics: x(t) = Ax( ) BKx(t) + BK,y4(t)
Simulation dynamics: X(t) = — BKX(t) + BK,y4(t) + L(y(t)—75(t))
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Choosing Gains

Effect of increasing Q's.
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Responses of plant and observer match. Why?
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Choosing Gains

Effect of increasing Qx[0], Qx[1], and Qx[2] — one at a time.
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Choosing Gains

Effect of increasing Q;'s.
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Observer Mismatch

What if the observer does not match the plant?

What if the red B is different from the green B?
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Choosing Gains

Effect of increasing Qi's when ~, for plant is half that for observer.
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Choosing Gains

Effect of increasing Q);'s when ~, for plant is half that for observer.
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Increasing L's by increasing Q;'s improves match (especially for 0(t)).




Choosing Gains

Effect of increasing @);'s one at a time.
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Better to assess L using differences between plant and observer variables.




Choosing Gains

To choose K, we minimize a cost function J that weighs the squares of
the state variables x(t) and input u(t):

J= /0 b <xT(t) Qx(t) + uT(t) Ru(t))dt

The most effective K is the one that minimizes the squared values of x(t)
and u(t).

To choose L, we minimize a cost function J’ that weighs the squares of
observer state errors e(t) = x(t) —X(t) and observer output errors y(t)—y(t):

J_ / " (e Qelt) + (v(H)-3(0)” B (y(t) (1)) at
0

The most effective L is the one that minimizes the squared values of e(t)
and y(t) - (t).



Choosing Gains

Effect of increasing @);'s one at a time.

column 1 column 2 column 3
0.2 0.2 0.2
= plant = plant = plant
= = =
| 0.0 4 =TT ——— s | 0.0 .a("\___',_.___......_ | 0.0
= = =
= = =
—0.2 = T T T T —0.2 = T T T T —0.2 = T T T T
0.2 0.2 0.2
E 0.0 E 0.0 A_‘____,_...—_____ E 0.0
g g g
—0.2 = T T T T —0.2 = T T T T —0.2 = T T T T
0.2 0.2 0.2
= = =
= 004 = 004 = 004
L] L] L]
—0.2 —0.2 —0.2
T T T T T T T T T T T T T T T
0.6 0.6 0.6
_ 0.3—’ _ 0.3—’ _ 0.3—’
% 0.0 - % 0.0 - % 0.0 -
—0.3 A —0.3 A —0.3 A
—0.6 = T T T T T —0.6 = T T T T T —0.6 = T T T T T
o] 1 2 3 4 5 o] 1 2 3 4 5 o] 1 2 3 4 5
time [s] time [s] time [s]

Which column shows
Q1:100,0,07 Q1:0,100,07 Q1:0,0,1007



Next Time

No lecture on Wednesday. No office hours on Wednesday.
Happy Thanksgiving!



