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Recap of Second Order Systems and PD Control

Recap: Line Following Example

d

V

θ

dm[n] = dm[n− 1] + ∆TV θ[n− 1],

θ[n] = θ[n− 1] + ∆Tω[n− 1],

ω[n] = γu[n].

Goal: control the angular velocity of the robot to follow the line.

Assume we have an optical sensor to measure the distance, dm.
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Recap of Second Order Systems and PD Control

Line Following System Equation

We arrived at the following system equation for our system:

dm[n]− 2dm[n− 1] + dm[n− 2] = ∆T 2V γu[n− 2].

We analyzed the PD controller for our control system:

u[n] = Kp (dd[n]− dm[n])+Kd

(
dd[n]− dd[n− 1]

∆T
− dm[n]− dm[n− 1]

∆T

)
.
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Recap of Second Order Systems and PD Control

Third Order Characteristic Equation

We obtain the following characteristic equation:

dm[n] − 2dm[n− 1] +
(
1 + ∆T 2V γKp +KdV γ∆T

)
dm[n− 2] −KdV γ∆Tdm[n− 3]

=
(
∆T 2γV Kp +Kd∆TV γ

)
dd[n− 2] −Kd∆TV γdd[n− 3]

This is a third order difference equation, which has the following
solution:

dm[n] = C1λ
n
1 + C2λ

n
2 + C3λ

n
3 .

Now there are 3 natural frequencies! Each are a function of Kp and Kd.
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Recap of Second Order Systems and PD Control

Root Locus Plot

With a non-zero Kd, we can see that now there is an optimal Kp value!
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Kp_values = np.linspace(0, 10000, 50000)

Kd = 20

V = 1

gamma = 1

Delta_T = 0.01
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Recap of Second Order Systems and PD Control

Finding the Optimal Gain Kp with Fixed Kd?

How do we find the optimal value of Kp?

# Get magnitude of natural frequencies

mag_poles = np.abs(poles)

# Get maximum natural frequency across all Kp's

row_max = np.max(mag_poles, axis=1)

# Get index of min-max natural frequency

min_max_idx = np.argmin(row_max)

print("Kp = ", Kp_values[min_max_idx])

Kp = 130.002
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Recap of Second Order Systems and PD Control

Fastest PD Step Response Plot
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Step Response with PD Control, Kd = 20, Kp = 130
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Steady State Error with PD Control

Steady-State Error?

With our system equation with PD control:

dm[n] − 2dm[n− 1] +
(
1 + ∆T 2V γKp +KdV γ∆T

)
dm[n− 2] −KdV γ∆Tdm[n− 3]

=
(
∆T 2γV Kp +Kd∆TV γ

)
dd[n− 2] −Kd∆TV γdd[n− 3],

we can analyze the steady-state error e[n] = dd[n]− dm[n]:

dm[n] − 2dm[n− 1] +
(
1 + ∆T 2V γKp +KdV γ∆T

)
dm[n− 2] −KdV γ∆Tdm[n− 3]

=
(
∆T 2γV Kp +Kd∆TV γ

)
dm[n− 2] −Kd∆TV γdm[n− 3]

+
(
∆T 2γV Kp +Kd∆TV γ

)
e[n− 2] −Kd∆TV γe[n− 3],
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Steady State Error with PD Control

Obtaining Steady-State Equation

Cancelling out some terms,

dm[n] − 2dm[n− 1] +
(

1 + ((((((((((hhhhhhhhhh∆T 2V γKp +KdV γ∆T
)
dm[n− 2] −((((((((hhhhhhhhKdV γ∆Tdm[n− 3]

=
(((((((((((((((hhhhhhhhhhhhhhh

(
∆T 2γV Kp +Kd∆TV γ

)
dm[n− 2] −((((((((hhhhhhhhKd∆TV γdm[n− 3]

+
(
∆T 2γV Kp +Kd∆TV γ

)
e[n− 2] −Kd∆TV γe[n− 3],

and simplifying,

dm[n]− 2dm[n− 1] + dm[n− 2]

=
(
∆T 2γV Kp +Kd∆TV γ

)
e[n− 2]−Kd∆TV γe[n− 3].
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Steady State Error with PD Control

Steady-State Error

Now, we want to analyze the steady-state error, i.e., n→∞:

dm[∞]− 2dm[∞] + dm[∞]

=
(
∆T 2γV Kp +Kd∆TV γ

)
e[∞]−Kd∆TV γe[∞].

We find that, as long as Kp 6= 0, the steady-state error,

∆T 2γV Kpe[∞] = 0⇒ e[∞] = 0,

is zero!
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Steady State Error with PD Control

Line Following with Loss

d

V

θ

dm[n] = dm[n− 1]− β∆Tdm[n− 1] + ∆TV θ[n− 1],

θ[n] = θ[n− 1] + ∆Tω[n− 1],

ω[n] = γu[n].

What’s the story when we include loss with β 6= 0?

dm[n] − (2+β∆T )dm[n− 1] +
(
1 + ∆T 2V γKp +KdV γ∆T

)
dm[n− 2] −KdV γ∆Tdm[n− 3]

=
(
∆T 2γV Kp +Kd∆TV γ

)
dd[n− 2] −Kd∆TV γdd[n− 3],
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Steady State Error with PD Control

Steady-State for Line Following with Loss

We can go through the same exercise and obtain,

dm[n]− (2 + β∆T )dm[n− 1] + dm[n− 2]

=
(
∆T 2γV Kp +Kd∆TV γ

)
e[n− 2]−Kd∆TV γe[n− 3].

This time, we obtain steady-state error of:

e[∞] =
−βdm[∞]

∆TγV Kp
6= 0.
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Steady State Error with PD Control

Visualizing PD Control Step Response with Error

β = 0
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Step Response with PD Control, Kd = 20, Kp = 130

⇒

β = 0.05
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Step Response with PD Control, Kd = 20, Kp = 130

We never reach zero error; we’ll need a new control signal.
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Introduction to PID Control

PD Control Evoles into PID Control

With the error term defined as,

e[n] = dd[n]− dm[n],

we can define the Proportional-Integral-Derivative (PID) controller,

u[n] = Kpe[n] +Ki∆T

m=n∑

m=0

e[m] +Kd
e[n]− e[n− 1]

∆T
.

The “integral” component accumulates all of the past errors.
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Introduction to PID Control

PID Controller Block Diagram

e[n]

∆T

Kp

+

+

delay

−

e[n− 1]

1
∆T Kd

+ Ki

∆T
∑n

m=0 e[m]

delay∆T
∑n−1

m=0 e[m]

u[n]
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Introduction to PID Control

Towards PID Analysis

Our system equation with the “integral” component becomes,

Ki∆T
3V γ

n−2∑

m=0

dm[m] + dm[n]− (2 + β∆T )dm[n− 1]

+(1 +Kp∆T
2γV +Kd∆TV γ)dm[n− 2]−KdV γ∆Tdm[n− 3]

=Ki∆T
3V γ

n−2∑

m=0

dd[m] + (Kp∆T
2V γ +Kd∆TV γ)dd[n− 2]

−Kd∆TV γdd[n− 3].

How do we handle these sums? ...It’s tricky! We will see on Wednesday.
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Introduction to PID Control

Visualizing Step Response with Error, β = 0.05

Ki = 0
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Step Response with PD Control, Kd = 20, Kp = 130

⇒

Ki = 116.8
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Step Response of the PID Transfer Function

Colab for PID numerical simulation: (here).
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https://colab.research.google.com/drive/1U3hVhIEAYg2WPQbxklQxc6pSVbfTHsZJ?usp=sharing


Introduction to PID Control

PID Root Locus with Kp = 100, Kd = 20

Ki = 116.8 at optimal point, for these values of Kp,Kd.
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Introduction to PID Control

Insights from Difference Equations

Let’s revisit our system equation with u[n] = Kp(dd[n]− dm[n]):

dm[n] = 2dm[n− 1]− dm[n− 2] + ∆T 2V γKp(dd[n− 2]− dm[n− 2]).

We can visualize this equation with a block diagram:

dd[n− 2]
+ µ + delay delay

dm[n− 2]

2+

−1

dm[n] dm[n− 1]

−
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Introduction to PID Control

Insights from Difference Equations

Additionally, we found the homogeneous solution (dd[n] = 0) by
solving:

λn = 2λn−1 − λn−2 −∆T 2V Kpγλ
n−2

We can also visualize this equation with a block diagram:

0
+ µ + delay delay

λn−2

2+

−1

λn λn−1

−
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Introduction to PID Control

Time and Frequency Domain

We can exploit relations between time and frequency domain
formulations to simplify our work and deepen our understanding of
control systems.

On Wednesday, we will begin by casting the two formulations into a
common framework.
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