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Second Order DT System: Line Following Example

Line Following Example

Consider a line following example illustrated below:

d

V

θ

d[n] = d[n− 1] + ∆TV sin θ[n− 1],

θ[n] = θ[n− 1] + ∆Tω[n− 1],

ω[n] = γu[n].

Goal: control the angular velocity of the robot to follow the line.

Assume we have an optical sensor to measure the distance, dm.
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Second Order DT System: Line Following Example

Small Adjustments...

Assume that we are operating in a small θ regime such that sin θ ≈ θ.

d

V

θ

dm[n] = dm[n− 1] + ∆TV θ[n− 1],

θ[n] = θ[n− 1] + ∆Tω[n− 1],

ω[n] = γu[n].

Goal: control the angular velocity of the robot to follow the line.

Assume we have an optical sensor to measure the distance, dm.
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Second Order DT System: Line Following Example

Towards a System Equation

Now, we need a system equation with respect to the measured
distance. Consider the difference between dm[n] and dm[n− 1]:

dm[n] = dm[n− 1] + ∆TV θ[n− 1]

− dm[n− 1] = dm[n− 2] + ∆TV θ[n− 2]

dm[n]− dm[n− 1] = dm[n− 1]− dm[n− 2] + ∆TV (θ[n− 1]− θ[n− 2])

With some rearranging:

dm[n]− 2dm[n− 1] + dm[n− 2] = ∆TV (θ[n− 1]− θ[n− 2])
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Second Order DT System: Line Following Example

Line Following System Equation

Recall that we have:

θ[n] = θ[n− 1] + ∆Tω[n− 1] = θ[n− 1] + ∆Tγu[n− 1].

Therefore, θ[n]− θ[n− 1] = ∆Tγu[n− 1], and we obtain:

dm[n]− 2dm[n− 1] + dm[n− 2] = ∆TV (θ[n− 1]− θ[n− 2])

⇒ dm[n]− 2dm[n− 1] + dm[n− 2] = ∆T 2V γu[n− 2]

Now, we need to pick our control signal, u[n].
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Proportional Controller Shortcomings

How About Proportional Control?

First, let’s attempt to use proportional control,

u[n] = Kp(dd[n]− dm[n]).

dm[n]− 2dm[n− 1]+dm[n− 2] =

∆T 2V γKp(dd[n− 2]− dm[n− 2])

⇒ dm[n]− 2dm[n− 1]+(1 + ∆T 2V Kpγ)dm[n− 2] =

∆T 2V γKpdd[n− 2]

Now, we have a second order difference equation for dm[n].
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Proportional Controller Shortcomings

Check Yourself: Step Response

Modify the code from last lecture (link) to plot the step response of
this second order system:

dm[n]− 2dm[n− 1]+(1 + ∆T 2V Kpγ)dm[n− 2] =

∆T 2V γKpdd[n− 2],

with the following parameters:

Kp = 5,

γ = 1,

V = 1,

∆T = 0.01,

simulation time = 25,

by defining a new transfer function. Be prepared to show the plot!
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https://colab.research.google.com/drive/1IvhjPe1mcSEnjFmqeYB9XFnLPMJG9MiB?usp=sharing


Proportional Controller Shortcomings

A (Condensed) Look at the Code..

# Define the system parameters

Kp = 5

gamma = 1

V = 1

dt = 0.01

# Define the transfer function

num = np.array([0, 0, dt**2*V*gamma*Kp])

den = np.array([1, -2, 1 + dt**2*V*gamma*Kp])

# Define our second-order system

system = ctrl.TransferFunction(num,den,dt=dt)

# Get step response

time = np.arange(0, 25, dt) # Create the time vector

_, response = ctrl.step_response(system, T=time)
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Proportional Controller Shortcomings

Step Response Plot
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Step Response of a Line-Following System
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Proportional Controller Shortcomings

Homogeneous Solution of Second Order DT System

For a second order DT system, the general solution is given by:

dm[n] = C1λ
n
1 + C2λ

n
2 ,

where λ1, λ2 are natural frequencies, C1, C2 are coefficients determined
by the initial conditions.

The homogeneous solution is given by:

λn − 2λn−1 + (1 + ∆T 2V Kpγ)λn−2 = 0

λ2 − 2λ+ (1 + ∆T 2V Kpγ) = 0

⇒ λ = 1± j
√

∆T 2V Kpγ
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Proportional Controller Shortcomings

A Complex Result...

The natural frequencies for the proportional controller are,

λ = 1± j
√

∆T 2V Kpγ.

λ1, λ2 will be complex numbers

...with magnitude strictly great than 1!

This system is always unstable regardless of Kp.
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Proportional Controller Shortcomings

Root Locus Plot
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New Controller: Proportional Derivative

Proportional-Derivative (PD) Controller

New controller: the proportional-derivative (PD) controller:

u[n] = Kp (dd[n]− dm[n])+Kd

(
dd[n]− dd[n− 1]

∆T
− dm[n]− dm[n− 1]

∆T

)
This controller not only cares about the relative distance, but also the
rate of change.
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New Controller: Proportional Derivative

System Equation with Proportional Derivative Control

From the original system equation,

dm[n]− 2dm[n− 1] + dm[n− 2] = ∆T 2V γu[n− 2],

we can plug in our new PD controller:

dm[n] − 2dm[n− 1] + dm[n− 2] =

∆T 2V γ

[
Kp (dd[n− 2] − dm[n− 3]) +Kd

(
dd[n− 2] − dd[n− 3]

∆T
−
dm[n− 2] − dm[n− 3]

∆T

)]

We will skip the algebra necessary to rearrange this equation...
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New Controller: Proportional Derivative

Third Order Characteristic Equation

We obtain the following characteristic equation:

dm[n] − 2dm[n− 1] +
(
1 + ∆T 2V γKp +KdV γ∆T

)
dm[n− 2] −KdV γ∆Tdm[n− 3]

=
(
∆T 2γV Kp +Kd∆TV γ

)
dd[n− 2] −Kd∆TV γdd[n− 3]

This is a third order difference equation, which has the following
solution:

dm[n] = C1λ
n
1 + C2λ

n
2 + C3λ

n
3 .

Now there are 3 natural frequencies! Each are a function of Kp and Kd.
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New Controller: Proportional Derivative

Third Order System in Python

# Define the system parameters

Kp = 5

Kd = 1

gamma = 1

V = 1

dt = 0.01

# Define the transfer function

num = np.array([0, 0, dt**2*V*gamma*Kp+Kd*V*gamma*dt, -Kd*V*gamma*dt])

den = np.array([1, -2, 1+dt**2*V*gamma*Kp+Kd*V*gamma*dt, -Kd*V*gamma*dt])

# Define our third-order system

system = ctrl.TransferFunction(num,den,dt=dt)

# Get step response

time = np.arange(0, 25, dt) # Create the time vector

_, response = ctrl.step_response(system, T=time)
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New Controller: Proportional Derivative

Third Order System Step Response Plot

Kp = 5,Kd = 1, γ = 1, V = 1,∆T = 0.01
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Step Response of a Line-Following System with PD Control
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New Controller: Proportional Derivative

Generating Locus Plots with Python

Finding closed-form solutions for λ1, λ2, λ3 is possible, but tedious.

Instead, we will generate the locus plots numerically with Python. A
Google Colab notebook containing the code to generate the plots in the
next few slides is available (here).
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https://colab.research.google.com/drive/1Wr879srOl7YwV3Q6ZoeFWqIcb2utdopZ?usp=sharing


New Controller: Proportional Derivative

Case 1: Set Kd = 0

As a sanity check, let’s generate the root locus plot when Kd = 0:
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New Controller: Proportional Derivative

Case 2: Set Kd = 20

With a non-zero Kd, we can see that now there is an optimal Kp value!
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