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State-Space Approach

In the first half of this subject, we focused on classical control. Next, we
introduce state-space control which is the basis of modern control.

We will use the state-space approach in Labs 5 and 6.

Today: Introduce state-space control by building on our classical model of
a simple system containing a mass, spring, and dashpot.



Classical Analysis

Start by describing the plant mathematically (Newton's law):

k(u®)=y(®)) = bi(t) = mij(t)
F ma

Use proportional control: w(t Kp(yd(t)—y(t)>

_.@_.’_. k;(u(t)—y(t)) = by(t) = mi(1)

Combine these equations into a single second-order system equation:

mij(t) + by(t) + k(1+K,)y(t) = kKpya(t)



State-Space Analysis

Start with the same dynamical description of the plant:

B(u()-y(t)) = bi(t) = mii(t)
f ma

Identify the state variables:

— The future of a system is fully described by the values of its state
variables at time {3 and the input to that system for ¢ > ;.
— No information about the system for t < t; is needed!

The state variables for the mass-spring-dashpot system are y(¢) and g(t).



State-Space Analysis

Start with the same dynamical description of the plant:

k(u®—y(0)) = by(t) = mi()
F ma

Rewrite dynamics as two first-order equations using state variables:

i[ﬁg]—[_ﬁm —Jml£g81+iéélwﬂ

x(t) A x(t) B
which can be expressed as a single, first-order matrix equation:
x(t) = Ax(t) + Bu(t)




State-Space Analysis

The output y(t) is a weighted sum of states x(¢) and input u(t):

(t)
Y N——
C  x

y(t) = Cx(t) + Du(t)

yt)=[1 0] {g(ﬂ 1 Duft)

where D is often zero (as it is for the mass-spring-dashpot system).



State-Space Analysis

State-Space Model of Plant

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

system (or state transition) matrix
input matrix

output matrix
feed-through (or feed-forward) matrix

caw»

We will focus on single input / single output (SISO) systems, but this
structure readily generalizes to multiple input / multiple output systems.



Full-State Feedback
A useful feature of the state-space formulation is that we can easily incor-

porate feedback from the entire state, not just from the output.

x(t)

u(®) >
ya(t) —» @—» x(t) = Ax(t) + Bu(t) »| C
! )
The scalar input to the plant (u(t)) is the difference between a scaled
version of the desired output y4(t) and a weighted sum of the states:

—> y(1)

u(t) = Kyya(t) — Kx(t)
Combine with the system equation for the plant:
x(t) = Ax(t) + Bu(t)
— Ax(t) + B (Kryd(t) - Kx(t))
- (A—BK)x(t) +BE,ya(t) = Acx(t) + Beya(t)
A.=(A—-BK) is the closed-loop system matrix.
B.=BXK, is the closed-loop input matrix.



Check Yourself

.
Find a state-space description
x(t)=Ax(t)+Bu(t)

of the robotic steering plant:
v
| d(t) = Vsin(0(t)) =~ VO(t)
i~
N . 0(t) = w(t)
L w(t) =u(t)

where the input is u(t) and the output is the distance d(t).

[ Which of the following matrices could be A?

L Joo0) o ] L, Jov] 0 0
Voo Voo 1o o " —K, 0

5. none of the above




Add Proportional Feedback Control to Robotic Steering

State-space formulation of proportional feedback.

x(t)

u(t
ya(t) —» @—()> x(t) = Ax(t) + Bu(t) > C = y(t)
! -
The scalar input to the plant (u(t)) is the difference between a scaled
version of the desired output y4(t) and a weighted sum of the states:

u(t) = Kyya(t) — Kx(t)
Combine with the system equation for the plant:
x(t) = Ax(t) + Bu(t)
— Ax(t) + B <Kryd(t) - Kx(t))
= (A-BK)x(t) + BK,ya(t) = Acx(t) + Beya(t)
A.=(A—-BK) is the closed-loop system matrix.
B.=BXK, is the closed-loop input matrix.



Check Yourself

p
Proportional control of state-space model of robotic steering:

u(t xX(t
ya(t) —» @_(). x(t) = Ax(t) + Bu(t) UK C >y
| ”
The closed-loop system can be represented as follows:
x(t) = Acx(t) 4+ Beya(t)

<@
«

[ Which of the following matrices could be A;? }

o L B L I O IR ]

5. none of the above




Summary (so far)

Classical Approach
e Describe a system by an ad hoc collection of scalar variables.

e Describe dynamics of a system by 14 possibly high-order diff. egn’s.
ad hoc collection of scalar variables — system of differential equations
State-Space Approach

e Describe a system by its states.

e Describe dynamics of a system by first-order relations among states.
e Collect the states and relations in a single first-order matrix equation.

first-order relations of state variables — first-order matrix equation

Next: Analyzing natural frequencies



Classical Analysis of Natural Frequencies
Find the natural frequencies of the closed-loop spring system.

Start with the homogeneous equation:
my(t) + by(t) + k(1+K,)y(t) =0

Use the eigenfunction property

d
dt

€St — —> Sest

to convert the differential equation to a difference equation as follows.
Let y(t) = e then

<m52 + bs + k(l—i—Kp)) et =0
Since e%'£0, the parenthesized part must be zero:

ms? + bs + k(1+K,) = 0

The roots of this characteristic equation are the natural frequencies of
the closed-loop system.



Check Yourself

Consider proportional control of a mass-spring-dashpot system:

alt) —»@_—» k(ul)-9(1)) = bi(0) = mie) e (0

Characteristic equation:
ms® + bs + k(1+K,) = 0

Which (if any) of the following sets of parameters gives rise to
an oscillatory step response when Kp =17

m b k K,
A: 1 3 1 1
B: 2 0 1 1
C: 1 2 172 1
D: 2 1 1 1

1. A 2. B&C 3. B&D 4. D 5. none of the above




State-Space Analysis of Natural Frequencies

Find the natural frequencies of the closed-loop system.
Start with the homogeneous equation:

x(1) = (A—BK)x(t)

Use the eigenvector/eigenvalue property:

Pv =sv =slv Vv—»| P | sv

(sI-P)v=0

Either v = 0 (trivial solution) or (sI—P) is singular (determinant is zero):
‘SI—P‘ —0

For the mass-spring-dashpot system,

S R A

S -1

1= || ki st obm)| =0

Characteristic equation: s>+ (b+kKs)s/m + k(1+K,)/m =0



Check Yourself

Match the following system matrices:

0 1 0 1 0 1
S Y T R
to their eigenvalues:
Im(sq) Im(sp) Im(se)

+ Re(sq) 4‘— Re(sp) AHL\‘ Re(sc)

Which (if any) of the following maps is correct?

[p1] [p2] [ps] [p1] [p2] [ps] [p1] [p2] [ps] [p1] [p2] [ps]
1. > 2. | | | 3. > L 4, ~ ~ 5. none
+4++  +++  +++

Sa  Spb Se Sa  Sp S Sa  Sp  Sec Sa  Spb S




From State-Space to Transfer Function

The mass-spring-dashpot system

can be represented by the following state-space description:
x(t) = Ax(t) + Bu(t)

y(t) = Cx(1)
where

0 1 0
a[ 0 0T e 0] emn
Derive the transfer function representation:
_Y(s)
 Ya(s)
for this system when operated with proportional control:

u(t) = Krya(t) — Kx(t) = Kpya(t) — [ K, 0]x(t)

H(s)



From State-Space to Transfer Function

Derive the transfer function for the following state-space system:
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

when operated with proportional control:
u(t) = Kyya(t) — Kx(t) = Kpya(t) — [ K, 0]x(t)

x(t) = Ax ()+Bu(t)
= Ax(t Kya(t) — Kx(t ))
=(A—BK) ()“‘BKryd()
= Acx(t) + Beya(t)
(sI—-Ac)X(s) = BcYa(s)
X(s) = (sI-Ac) " BeYy(s)
Y(s) = CX(s) = C(sI-Ac) 'BcYq(s)
%) — C(sI-Ac) !B,

\/




From State-Space to Transfer Function

H(s) = ;;((“3 = C(sI-A.) !B,

For the mass, spring, dashpot system:

H(s)=[1 0] (1+Kj,)k/m sgbl/m}l[Kp’S/m}

=[1 0] + sb/m +1(1+Kp)k’/m [—(1szi/gz/m ﬂ [sz/m]

1 0
= 2 shm+ (F Ky kgm Y 1 {ka/m]
Kyk/m

s2 4+ sb/m + (1+K,)k/m



Check Yourself

p
Consider a plant described by the following differential equation:
g(t) +59(t) + 6y(t) = u(t)

[ Which of the following show A, B, C matrices for this plant.

(01 0

LA=| ) B_J_,C_U 0]
o o

2 A= B_J_,c_u —1]
a0 o

5A=| 4_,B___,C_}1H

4. all of the above

5. none of the above




From Classical to Modern Control

New approach:

e replace the high-order differential equation in classical control with a set
of first-order differential equations, each characterizing a single state.
combine individual first-order states into a composite state vector.

[ )

e describe how states interact with each other with a system matrix.
e describe how the input(s) affect each state with an input vector.

e describe the output(s) as a weighted sum of states (and inputs).
Advantages:

e more powerful full-state feedback
e solutions in terms of standardized methods based on linear algebra
instead of problem-specific differential equations.

Applications:
e finding characteristic equation and natural frequencies
e relating state-space and transfer function representations

Next time: step response and matrix exponentials



