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State-Space Approach

In the first half of this subject, we focused on classical control. Next, we

introduce state-space control which is the basis of modern control.

We will use the state-space approach in Labs 5 and 6.

Today: Introduce state-space control by building on our classical model of

a simple system containing a mass, spring, and dashpot.



Classical Analysis

u(t)

y(t)

Start by describing the plant mathematically (Newton’s law):

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma
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Classical Analysis

u(t)

y(t)

Start by describing the plant mathematically (Newton’s law):

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Use proportional control: u(t) = Kp

(
yd(t)−y(t)

)
+ Kp k

(
u(t)−y(t)

)
− bẏ(t) = mÿ(t)

−
yd(t) y(t)

u(t)

Combine these equations into a single second-order system equation:

mÿ(t) + bẏ(t) + k(1+Kp)y(t) = kKpyd(t)



State-Space Analysis

u(t)

y(t)

Start with the same dynamical description of the plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Identify the state variables:

→ The future of a system is fully described by the values of its state

variables at time t0 and the input to that system for t ≥ t0.

→ No information about the system for t < t0 is needed!

The state variables for the mass-spring-dashpot system are y(t) and ẏ(t).



State-Space Analysis

u(t)

y(t)

Start with the same dynamical description of the plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Rewrite dynamics as two first-order equations using state variables:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

which can be expressed as a single, first-order matrix equation:

ẋ(t) = Ax(t) +Bu(t)



State-Space Analysis

u(t)

y(t)

The output y(t) is a weighted sum of states x(t) and input u(t):

y(t) = [ 1 0 ]︸ ︷︷ ︸
C

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+Du(t)

y(t) = Cx(t) +Du(t)

where D is often zero (as it is for the mass-spring-dashpot system).



State-Space Analysis

u(t)

y(t)

State-Space Model of Plant

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

A: system (or state transition) matrix

B: input matrix

C: output matrix

D: feed-through (or feed-forward) matrix

We will focus on single input / single output (SISO) systems, but this

structure readily generalizes to multiple input / multiple output systems.



Full-State Feedback

A useful feature of the state-space formulation is that we can easily incor-

porate feedback from the entire state, not just from the output.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)



Full-State Feedback

A useful feature of the state-space formulation is that we can easily incor-

porate feedback from the entire state, not just from the output.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The scalar input to the plant (u(t)) is the difference between a scaled

version of the desired output yd(t) and a weighted sum of the states:

u(t) = Kryd(t)−Kx(t)
Combine with the system equation for the plant:

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +B

(
Kryd(t)−Kx(t)

)
=
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)

Ac=(A−BK) is the closed-loop system matrix.

Bc=BKr is the closed-loop input matrix.



Check Yourself

Find a state-space description

ẋ(t)=Ax(t)+Bu(t)
of the robotic steering plant:

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

where the input is u(t) and the output is the distance d(t).

Which of the following matrices could be A?

1.

[
0 0
V 0

]
2.

[
0 −γKp

V 0

]
3.

[
0 V

0 0

]
4.

[
0 0

−γKp 0

]
5. none of the above



Check Yourself

Find a state-space description of the robotic steering plant:

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

What are the state variables?



Check Yourself

Find a state-space description of the robotic steering plant:

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

Let x(t) =
[
θ(t)
d(t)

]
.

Then
d

dt

[
θ(t)
d(t)

]
=
[

0 0
V 0

] [
θ(t)
d(t)

]
+
[
γ

0

]
u(t)



Check Yourself

Find a state-space description of the robotic steering plant:

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

Let x(t) =
[
θ(t)
d(t)

]
.

Then
d

dt

[
θ(t)
d(t)

]
=
[

0 0
V 0

] [
θ(t)
d(t)

]
+
[
γ

0

]
u(t)

Alternatively, let x(t) =
[
d(t)
θ(t)

]
.

Then
d

dt

[
d(t)
θ(t)

]
=
[

0 V

0 0

] [
d(t)
θ(t)

]
+
[

0
γ

]
u(t)



Check Yourself

Find a state-space description

ẋ(t)=Ax(t)+Bu(t)
of the robotic steering plant:

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

where the input is u(t) and the output is the distance d(t).

Which of the following matrices could be A? 1 or 3

1.

[
0 0
V 0

]
2.

[
0 −γKp

V 0

]
3.

[
0 V

0 0

]
4.

[
0 0

−γKp 0

]
5. none of the above



State-Space Description of the Robotic Steering Plant

θ

V

d

ḋ(t) = V sin(θ(t)) ≈ V θ(t)

θ̇(t) = ω(t)

ω(t) = γu(t)

d

dt

[
θ(t)
d(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 0
V 0

]
︸ ︷︷ ︸

A

[
θ(t)
d(t)

]
︸ ︷︷ ︸
x(t)

+
[
γ

0

]
︸︷︷︸
B

u(t)

–-> State Transition Equation: ẋ(t) = Ax(t) +Bu(t)

d(t)︸︷︷︸
y(t)

= [ 0 1 ]︸ ︷︷ ︸
C

[
θ(t)
d(t)

]
︸ ︷︷ ︸
x(t)

–-> Output Equation: y(t) = Cx(t)



Add Proportional Feedback Control to Robotic Steering

State-space formulation of proportional feedback.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The scalar input to the plant (u(t)) is the difference between a scaled

version of the desired output yd(t) and a weighted sum of the states:

u(t) = Kryd(t)−Kx(t)
Combine with the system equation for the plant:

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +B

(
Kryd(t)−Kx(t)

)
=
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)

Ac=(A−BK) is the closed-loop system matrix.

Bc=BKr is the closed-loop input matrix.



Check Yourself

Proportional control of state-space model of robotic steering:

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop system can be represented as follows:

ẋ(t) = Acx(t) +Bcyd(t)

Which of the following matrices could be Ac?

1.

[
0 0
V 0

]
2.

[
0 −γKp

V 0

]
3.

[
0 V

0 0

]
4.

[
0 0

−γKp 0

]
5. none of the above



Check Yourself

Proportional control of state-space model of robotic steering:

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop system can be represented as follows:

ẋ(t) = Acx(t) +Bcyd(t)
where

Ac = A−BK =
[

0 0
V 0

]
−
[
γ

0

]
K

For proportional feedback, Kx(t) = Kpy(t) = Kpd(t) → K = [ 0 Kp ]

Ac = A−BK =
[

0 0
V 0

]
−
[
γ

0

]
[ 0 Kp ] =

[
0 −γKp

V 0

]
We also need Kr = Kp:

Bc = BKr =
[
γ

0

]
Kr =

[
γKr

0

]
=
[
γKp

0

]



Check Yourself

Proportional control of state-space model of robotic steering:

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop system can be represented as follows:

ẋ(t) = Acx(t) +Bcyd(t)

Which of the following matrices could be Ac? 2

1.

[
0 0
V 0

]
2.

[
0 −γKp

V 0

]
3.

[
0 V

0 0

]
4.

[
0 0

−γKp 0

]
5. none of the above



Summary (so far)

Classical Approach

• Describe a system by an ad hoc collection of scalar variables.

• Describe dynamics of a system by 1+ possibly high-order diff. eqn’s.

ad hoc collection of scalar variables→ system of differential equations

State-Space Approach

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

first-order relations of state variables → first-order matrix equation



Summary (so far)

Classical Approach

• Describe a system by an ad hoc collection of scalar variables.

• Describe dynamics of a system by 1+ possibly high-order diff. eqn’s.

ad hoc collection of scalar variables→ system of differential equations

State-Space Approach

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

first-order relations of state variables → first-order matrix equation

Next: Analyzing natural frequencies



Classical Analysis of Natural Frequencies

Find the natural frequencies of the closed-loop spring system.

Start with the homogeneous equation:

mÿ(t) + bẏ(t) + k(1+Kp)y(t) = 0

Use the eigenfunction property

d

dt
est sest

to convert the differential equation to a difference equation as follows.

Let y(t) = est then(
ms2 + bs+ k(1+Kp)

)
est = 0

Since est 6=0, the parenthesized part must be zero:

ms2 + bs+ k(1+Kp) = 0
The roots of this characteristic equation are the natural frequencies of

the closed-loop system.



Check Yourself

Consider proportional control of a mass-spring-dashpot system:

+ Kp k
(
u(t)−y(t)

)
− bẏ(t) = mÿ(t)

−
yd(t) y(t)

u(t)

Characteristic equation:

ms2 + bs+ k(1+Kp) = 0

Which (if any) of the following sets of parameters gives rise to

an oscillatory step response when Kp = 1?

m b k Kp

A: 1 3 1 1

B: 2 0 1 1

C: 1 2 1/2 1

D: 2 1 1 1

1. A 2. B&C 3. B&D 4. D 5. none of the above



Check Yourself

The step response will be oscillatory if roots of the characteristic equation

ms2 + bs+ k(1+Kp) = 0
have non-zero imaginary parts.

We can find the imaginary parts of the roots from the quadratic equation:

s =
−b±

√
b2 − 4k(1+Kp)m

2m
The imaginary parts will be nonzero if 4k(1+Kp)m > b2.

m b k Kp 4k(1+Kp)m b2

A: 1 3 1 1 8 9

B: 2 0 1 1 16 0
√

C: 1 2 1/2 1 4 4

D: 2 1 1 1 16 1
√

1. A 2. B&C 3. B&D 4. D 5. none of the above



Check Yourself

Consider proportional control of a mass-spring-dashpot system:

+ Kp k
(
u(t)−y(t)

)
− bẏ(t) = mÿ(t)

−
yd(t) y(t)

u(t)

Characteristic equation:

ms2 + bs+ k(1+Kp) = 0

Which (if any) of the following sets of parameters gives rise to

an oscillatory step response when Kp = 1? 3. B&D

m b k Kp

A: 1 3 1 1

B: 2 0 1 1

C: 1 2 1/2 1

D: 2 1 1 1

1. A 2. B&C 3. B&D 4. D 5. none of the above



State-Space Analysis of Natural Frequencies

Find the natural frequencies of the closed-loop system.

Start with the homogeneous equation:

ẋ(t) =
(
A−BK

)
x(t)

Use the eigenvector/eigenvalue property:

Pv svPv = sv = sIv

(s I−P)v = 0
Either v = 0 (trivial solution) or (s I−P) is singular (determinant is zero):∣∣∣s I−P∣∣∣ = 0



State-Space Analysis of Natural Frequencies

Find the natural frequencies of the closed-loop system.

Start with the homogeneous equation:

ẋ(t) =
(
A−BK

)
x(t)

Use the eigenvector/eigenvalue property:

Pv svPv = sv = sIv

(s I−P)v = 0
Either v = 0 (trivial solution) or (s I−P) is singular (determinant is zero):∣∣∣s I−P∣∣∣ = 0
For the mass-spring-dashpot system,

P = A−BK =
[

0 1
−k/m −b/m

]
−
[

0
k/m

]
[K1 K2 ]

|s I−P| =
∣∣∣∣[ s −1
k(1+K1)/m s+(b+kK2)/m

]∣∣∣∣ = 0

Characteristic equation: s2 + (b+kK2)s/m+ k(1+K1)/m = 0
√



Check Yourself

Match the following system matrices:

P1 =
[

0 1
−2 −3

]
P2 =

[
0 1
−1 0

]
P3 =

[
0 1
−1 −2

]
to their eigenvalues:

Re(sa)

Im(sa)

Re(sb)

Im(sb)

( )2 Re(sc)

Im(sc)

Which (if any) of the following maps is correct?

[p1] [p2] [p3]

sa sb sc

1.

[p1] [p2] [p3]

sa sb sc

2.

[p1] [p2] [p3]

sa sb sc

3.

[p1] [p2] [p3]

sa sb sc

4. 5. none



Check Yourself

Match the following system matrices:

P1 =
[

0 1
−2 −3

]
P2 =

[
0 1
−1 0

]
P3 =

[
0 1
−1 −2

]
to their eigenvalues.

|sI− P1| =
∣∣∣∣[ s −1

2 s+3

]∣∣∣∣ = s2 + 3s+ 2 = (s+1)(s+2)

s1 = −1,−2

|sI− P2| =
∣∣∣∣[ s −1

1 s

]∣∣∣∣ = s2 + 1 = (s+j)(s−j)

s2 = ±j

|sI− P3| =
∣∣∣∣[ s −1

1 s+2

]∣∣∣∣ = s2 + 2s+ 1 = (s+1)2

s3 = −1,−1



Check Yourself

Match the following system matrices:

P1 =
[

0 1
−2 −3

]
P2 =

[
0 1
−1 0

]
P3 =

[
0 1
−1 −2

]
to their eigenvalues:

Re(sa)

Im(sa)

Re(sb)

Im(sb)

( )2 Re(sc)

Im(sc)

Which (if any) of the following maps is correct? 2.

[p1] [p2] [p3]

sa sb sc

1.

[p1] [p2] [p3]

sa sb sc

2.

[p1] [p2] [p3]

sa sb sc

3.

[p1] [p2] [p3]

sa sb sc

4. 5. none



From State-Space to Transfer Function

The mass-spring-dashpot system

u(t)

y(t)

can be represented by the following state-space description:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where

A =
[

0 1
−k/m −b/m

]
B =

[
0

k/m

]
C = [ 1 0 ]

Derive the transfer function representation:

H(s) = Y (s)
Yd(s)

for this system when operated with proportional control:

u(t) = Kryd(t)−Kx(t) = Kpyd(t)− [ Kp 0 ]x(t)



From State-Space to Transfer Function

Derive the transfer function for the following state-space system:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

when operated with proportional control:

u(t) = Kryd(t)−Kx(t) = Kpyd(t)− [ Kp 0 ]x(t)

ẋ(t) = Ax(t)+Bu(t)

= Ax(t) +B

(
Kryd(t)−Kx(t)

)
= (A−BK)x(t) +BKryd(t)
= Acx(t) +Bcyd(t)

(sI−Ac)X(s) = BcYd(s)

X(s) = (sI−Ac)−1
BcYd(s)

Y (s) = CX(s) = C(sI−Ac)−1
BcYd(s)

H(s) = Y (s)
Yd(s) = C(sI−Ac)−1

Bc



From State-Space to Transfer Function

H(s) = Y (s)
Yd(s) = C(sI−Ac)−1

Bc

For the mass, spring, dashpot system:

H(s) = [ 1 0 ]
[

s −1
(1+Kp)k/m s+b/m

]−1 [ 0
Kpk/m

]

= [ 1 0 ] 1
s2 + sb/m+ (1+Kp)k/m

[
s+b/m 1

−(1+Kp)k/m s

] [ 0
Kpk/m

]

= 1
s2 + sb/m+ (1+Kp)k/m [ s+b/m 1 ]

[ 0
Kpk/m

]
= Kpk/m

s2 + sb/m+ (1+Kp)k/m
√



Check Yourself

Consider a plant described by the following differential equation:

ÿ(t) + 5ẏ(t) + 6y(t) = u(t)

Which of the following show A, B, C matrices for this plant.

1. A =
[

0 1
−6 −5

]
; B =

[
0
1

]
; C = [ 1 0 ]

2. A =
[
−2 0
0 −3

]
; B =

[
1
1

]
; C = [ 1 −1 ]

3. A =
[
−3 0
0 −2

]
; B =

[
1
1

]
; C = [−1 1 ]

4. all of the above

5. none of the above



Check Yourself

Find A, B, and C.

ÿ(t) + 5ẏ(t) + 6y(t) = u(t)

Let x1(t) = y(t) and x2(t) = ẏ(t).

d

dt

[
y(t)
ẏ(t)

]
=
[

0 1
−6 −5

] [
y(t)
ẏ(t)

]
+
[

0
1

]
u(t)

y(t) = [ 1 0 ]
[
y(t)
ẏ(t)

]

A =
[

0 1
−6 −5

]
; B =

[
0
1

]
; C = [ 1 0 ]



Check Yourself

Find A, B, and C.

ÿ(t) + 5ẏ(t) + 6y(t) = u(t)

Y (s)
U(s) = 1

s2 + 5s+ 6 = 1
(s+ 2)(s+ 3) = 1

s+ 2 −
1

s+ 3 ≡
Y1(s)
U(s) −

Y2(s)
U(s)

ẏ1(t) + 2y1(t) = u(t)
ẏ2(t) + 3y2(t) = u(t)
y(t) = y1(t)− y2(t)

d

dt

[
y1(t)
y2(t)

]
=
[
−2 0
0 −3

] [
y1(t)
y2(t)

]
+
[

1
1

]
u(t)

y(t) = [ 1 −1 ]
[
y1(t)
y2(t)

]

A =
[
−2 0
0 −3

]
; B =

[
1
1

]
; C = [ 1 −1 ]



Check Yourself

Find A, B, and C.

d

dt

[
y1(t)
y2(t)

]
=
[
−2 0
0 −3

] [
y1(t)
y2(t)

]
+
[

1
1

]
u(t)

y(t) = [ 1 −1 ]
[
y1(t)
y2(t)

]

A =
[
−2 0
0 −3

]
; B =

[
1
1

]
; C = [ 1 −1 ]

Swap the order of the state variables:

d

dt

[
y2(t)
y1(t)

]
=
[
−3 0
0 −2

] [
y2(t)
y1(t)

]
+
[

1
1

]
u(t)

y(t) = [−1 1 ]
[
y2(t)
y1(t)

]

A =
[
−3 0
0 −2

]
; B =

[
1
1

]
; C = [−1 1 ]



Check Yourself

Consider a plant described by the following differential equation:

ÿ(t) + 5ẏ(t) + 6y(t) = u(t)

Which of the following show A, B, C matrices for this plant. 4.

1. A =
[

0 1
−6 −5

]
; B =

[
0
1

]
; C = [ 1 0 ]

2. A =
[
−2 0
0 −3

]
; B =

[
1
1

]
; C = [ 1 −1 ]

3. A =
[
−3 0
0 −2

]
; B =

[
1
1

]
; C = [−1 1 ]

4. all of the above

5. none of the above



From Classical to Modern Control

New approach:

• replace the high-order differential equation in classical control with a set

of first-order differential equations, each characterizing a single state.

• combine individual first-order states into a composite state vector.

• describe how states interact with each other with a system matrix.

• describe how the input(s) affect each state with an input vector.

• describe the output(s) as a weighted sum of states (and inputs).

Advantages:

• more powerful full-state feedback

• solutions in terms of standardized methods based on linear algebra

instead of problem-specific differential equations.

Applications:

• finding characteristic equation and natural frequencies

• relating state-space and transfer function representations

Next time: step response and matrix exponentials


