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State-Space Approach

Last time, we introduced the State-Space approach to control:

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Plant: state matrix A, input vector B, and output vector C:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Feedback is characterized by a feedback vector K and input scaler Kr:

u(t) = Kryd(t)−Kx(t)
Combine to obtain closed-loop characterization:

ẋ(t) =
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)



State-Space Analysis of Natural Frequencies

Find the natural frequencies of the closed-loop system.

Start with the homogeneous equation:

ẋ(t) =
(
A−BK

)
x(t) = Acx(t)

Use the eigenvector/eigenvalue property:

Acv svAcv = sv = sIv

(s I−Ac)v = 0
Either v = 0 (trivial solution) or (s I−Ac) is singular (determinant is zero):∣∣∣s I−Ac

∣∣∣ = 0

Example: mass-spring-dashpot system:

Ac = A−BK =
[

0 1
−k/m −b/m

]
−
[

0
k/m

]
[K1 K2 ]

|s I−Ac| =
∣∣∣∣[ s −1
k(1+K1)/m s+(b+kK2)/m

]∣∣∣∣ = 0

Characteristic equation: s2 + (b+kK2)s/m+ k(1+K1)/m = 0
√



From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Example: mass-spring-dashpot system:

u(t)

y(t)

Given the state-space representation:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

where

A =
[

0 1
−k/m −b/m

]
B =

[
0

k/m

]
C = [ 1 0 ]

find transfer function:

H(s) = Y (s)
U(s)



From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

ẋ(t) = Ax(t)+Bu(t)
Convert to frequency domain:

sX(s) = AX(s) +BU(s)

(sI−A)X(s) = BU(s)

X(s) = (sI−A)−1BU(s)

Y (s) = CX(s) = C(sI−A)−1BU(s)

H(s) = Y (s)
U(s) = C(sI−A)−1B



From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

H(s) = Y (s)
U(s) = C(sI−A)−1B

For the mass, spring, dashpot system:

A =
[

0 1
−k/m −b/m

]
B =

[
0

k/m

]
C = [ 1 0 ]

H(s) = [ 1 0 ]
[

s −1
k/m s+b/m

]−1 [ 0
k/m

]

= [ 1 0 ] 1
s2 + sb/m+ k/m

[
s+b/m 1
−k/m s

] [ 0
k/m

]

= 1
s2 + sb/m+ k/m

[ s+b/m 1 ]
[ 0
k/m

]
= k/m

s2 + sb/m+ k/m

√



Check Yourself

Consider a plant described by the following differential equation:

ÿ(t) + 5ẏ(t) + 6y(t) = u(t)

Which of the following show A, B, C matrices for this plant.

1. A =
[

0 1
−6 −5

]
; B =

[
0
1

]
; C = [ 1 0 ]

2. A =
[
−2 0
0 −3

]
; B =

[
1
1

]
; C = [ 1 −1 ]

3. A =
[
−3 0
0 −2

]
; B =

[
1
1

]
; C = [−1 1 ]

4. all of the above

5. none of the above



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
where P and Q can represent open-loop matrices A and B or closed-loop

matrices Ac and Bc.

Start by finding the step response of the scalar version of this system:

ẋ(t) = px(t) + qu(t)



Step Response

Find the step response xs(t) of the following scalar system equation:

ẋ(t) = px(t) + qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = pxh(t)
xh(t) = αeβt

ẋh(t) = βαeβt = pxh(t) = pαeβt → β = p

xh(t) = αept

Particular solution: xp(t) = γ

ẋp(t) = 0 = pγ + q

γ = −q/p (provided that p 6= 0)

Initial condition: xs(0) = α− q/p = 0
α = q/p

Final solution:

xs(t) = q(ept−1)/p



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)

The step response xs(t) of the scalar version of this system:

ẋ(t) = px(t) + qu(t)
is

xs(t) = q( ept − 1)/p

provided p 6= 0.

What’s the matrix equivalent of the exponential function ept?



Scalar Exponential Function

Exponential functions are eigenfunctions of the derivative operator:

d

dt
ept pept

Express the exponential function as a power series:

ept = 1 + pt

1! + p2t2

2! + p3t3

3! + · · ·

Differentiate term-by-term:

d

dt
ept = 0 + p

1! + 2p2t

2! + 3p3t2

3! + · · ·

= p+ p
pt

1! + p
p2t2

2! + p
p3t3

3! + · · ·

= p
(

1 + pt

1! + p2t2

2! + p3t3

3! + · · ·
)

= pept
√



Matrix Exponential Function

Matrix exponentials are eigenfunctions of the matrix derivative operator:

d

dt
ePt

PePt

The matrix exponential function can also be expanded as a power series:

ePt = I+ Pt

1! + P2t2

2! + P3t3

3! + · · ·

Differentiate term-by-term:

d

dt
ePt = 0 + P

1! + 2P2t

2! + 3P3t2

3! + · · ·

= P+ P
Pt

1! + P
P2t2

2! + P
P3t3

3! + · · ·

= P
(
I+ Pt

1! + P2t2

2! + P3t3

3! + · · ·
)

= PePt = ePtP
√



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

xh(t) = ePt	

Particular solution: xp(t) = �

ẋp(t) = 0 = P�+Q

� = −P−1Q (provided that P is not singular)

Initial condition: x(0) = 	− P−1Q = 0

	 = P−1Q

Step response:

xs(t) = (ePt − I)P−1Q

= P−1(ePt − I)Q



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Then the solution is

xs(t) = P−1(ePt − I)Q
provided P is not singular.

Notice that this solution to the matrix problem matches the scalar solution

if the matrix problem is first order.

xs(t) = q(ept−1)/p

But unlike the scalar approach (homogeneous and particular solutions, ini-

tial conditions, etc.), the matrix solution works for any order.



Step Response: Second-Order Example

Find the step response of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t) =
[
−1 0
0 −2

]
x(t) +

[
1
1

]
u(t)

xs(t) = P−1(ePt−I)Q

Find P−1: (easy because P is diagonal)

P−1 =
[
−1 0
0 −1/2

]



Step Response: Second-Order Example

Find the step response of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t) =
[
−1 0
0 −2

]
x(t) +

[
1
1

]
u(t)

xs(t) = P−1(ePt−I)Q

Find the matrix exponential:

ePt = I+ Pt+ P2t2/2! + P3t3/3! + P4t4/4! + · · ·

=
[ 1 0

0 1

]
+
[−1 0

0 −2

]
t+
[−1 0

0 −2

]2
t2

2! +
[−1 0

0 −2

]3
t3

3! + · · ·

=
[ 1 0

0 1

]
+
[−1 0

0 −2

]
t+
[ 1 0

0 4

]
t2

2! +
[−1 0

0 −8

]
t3

3! + · · ·

=
[ 1− t+ t2/2!− t3/3! + · · · 0

0 1− 2t+ (2t)2/2!− (2t)3/3! + · · ·

]
=
[
e−t 0
0 e−2t

]



Step Response: Second-Order Example

Find the step response of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t) =
[
−1 0
0 −2

]
x(t) +

[
1
1

]
u(t)

xs(t) = P−1(ePt−I)Q

Substitute into the general expression for the step response of the state:

xs(t) = P−1(ePt−I)Q

=
[−1 0

0 −1/2

]([
e−t 0
0 e−2t

]
−
[ 1 0

0 1

])[ 1
1

]

=
[−1 0

0 −1/2

] [
e−t−1 0

0 e−2t−1

] [ 1
1

]

=
[ 1−e−t 0

0 (1−e−2t)/2

] [ 1
1

]

=
[ 1−e−t

(1−e−2t)/2

]



Step Response: Second-Order Example

Find the step response of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t) =
[
−1 0
0 −2

]
x(t) +

[
1
1

]
u(t)

xs(t) = P−1(ePt−I)Q

Much of the ad hoc algebra that we used to solve higher-order differential

equations is replaced by the rules of linear algebra.



Check Yourself

Let P represent the following matrix:

P =
[

1 0
0 −2

]

Which (if any) of the following matrices is equal to eP ?

1.

[
1 0
0 −2

]
2.

[
et 0
0 e−2t

]
3.

[
1/e 0
0 2e2

]

4. eP does not exist because the system is unstable

5. none of the above



Computing Matrix Exponentials

Finding the series expansion of a matrix exponential

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·
is easy when P is diagonal:

P =

λ1

λ2
. . .



eP =

 1
1

. . .

+

λ1

λ2
. . .

+ 1
2!

λ1

λ2
. . .


2

+ · · ·

=

 1
1

. . .

+

λ1

λ2
. . .

+ 1
2!

λ
2
1

λ2
2

. . .

+ · · ·

=

 1 + λ1 + λ2
1/2!

1 + λ2 + λ2
2/2!

. . .

 =

 e
λ1

eλ2
. . .





Computing Matrix Exponentials

Fortunately it’s easy to diagonalize a matrix that is full-rank and has

distinct eigenvalues. Start with the eigenvector/eigenvalue property:

Pvi λivi
Pvi = λivi

where λi is the ith eigenvalue and vi is the ith eigenvector (a column vector).

If P is full rank and if none of the eigenvalues are repeated

P
[
v1|v2|v3| · · · |vn

]
=
[
Pv1|Pv2|Pv3| · · · |Pvn

]
=
[
λ1v1|λ2v2|λ3v3| · · · |λnvn

]
=
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]λ1

λ2
. . .


PV = V�

P = V�V−1

where V =
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]

and � =

λ1
λ2

. . .

.



Computing Matrix Exponentials

Substitute the diagonal expansion of P:

P = V�V−1

into the series expansion of eP:

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·

= I+
d

dt
ePt

PePt
+ 1

2!

d

dt
ePt

PePt d

dt
ePt

PePt
+ 1

3!

d

dt
ePt

PePt d

dt
ePt

PePt d

dt
ePt

PePt
+ · · ·

= I+V�V−1 + 1
2!V�

Pvi λivi�V−1 + 1
3!V�

Pvi λivi� Pvi λivi�V−1 + · · ·

= I+V�V−1 + 1
2!V�

2V−1 + 1
3!V�

3V−1 + · · ·

= VV−1 +V�V−1 + 1
2!V�

2V−1 + 1
3!V�

3V−1 + · · ·

= V

(
I+�+ 1

2!�
2 + 1

3!�
3 + · · ·

)
V−1

= Ve�V−1

The matrix exponential of P can be directly computed from the eigenvalues

and eigenvectors of P.



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P.



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

|sI− P| =
∣∣∣∣[ s −1

2 s+ 3

]∣∣∣∣ = s2 + 3s+ 2 = (s+ 1)(s+ 2) = 0

s1,2 = −1,−2



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

Step 2: Find the eigenvectors of P

Pv = P

[
a

b

]
= sv = s

[
a

b

]



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

Step 2: Find the eigenvectors of P

Pv = P

[
a

b

]
= sv = s

[
a

b

]
s = −1:[

0 1
−2 −3

] [
a

b

]
= −1

[
a

b

]
b = −a

−2a− 3b = −b[
a

b

]
= α

[
1
−1

]
; ∀α



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

Step 2: Find the eigenvectors of P

Pv = P

[
a

b

]
= sv = s

[
a

b

]
s = −2:[

0 1
−2 −3

] [
a

b

]
= −2

[
a

b

]
b = −2a

−2a− 3b = −2b[
a

b

]
= β

[
1
−2

]
; ∀β



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

Step 2: Find the eigenvectors of P:

[
1
−1

]
and

[
1
−2

]
.

Step 3: Find ePt = Ve�tV−1.

ePt =
[ 1
−1

∣∣∣ 1
−2

] [
e−t 0
0 e−2t

] [ 1
−1

∣∣∣ 1
−2

]−1

=
[ 1 1
−1 −2

] [
e−t 0
0 e−2t

] [ 2 1
−1 −1

]

=
[
e−t e−2t

−e−t −2e−2t

] [ 2 1
−1 −1

]

=
[ 2e−t−e−2t e−t−e−2t

−2e−t+2e−2t −e−t+2e−2t

]



Check Yourself

Let

P =
[

0 1
−1 0

]

Determine ePt



Summary

Characterizing systems described by state-space representations.

Relation between state-space and transfer function representations

• specifying A,B,C uniquely determines H(s) = C(sI−A)−1B.

• specific transfer functions can be represented with different A,B,C:

depends on how we choose the state.

Determined step response of a state-space model

• found explicit representation using matrix exponential

• diagonalized system matrix to simplify computing matrix exponential

Next Time: Finding “optimal” gains for state-space control.


