
6.3100: Dynamic System Modeling and Control Design

State-Space Control with Observers

November 20, 2024



Full-State Feedback

One of the most powerful features of the state-space approach to control

is the ability to incorporate feedback from all of the states of the plant.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

This can be especially important in systems with internal states that are

difficult to control.

Example: two-spring system



Example: Two-Spring System

The plant consists of two springs and two masses. Use the input u(t) =
x0(t) to move the bottom mass to the desired location x2(t) = yd(t).

yd(t)

x0(t)

x1(t)

x2(t)



Proportional Control

This system is difficult to control. A proportional controller converges

slowly, has large overshoots, and oscillates.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses (mass m = 1, stiffness k = 2, damping b = 1.4):

This feedback system is stable for only a small range of gains: Kp < 2.7.



Classical Control

Root Locus: As Kp increases, the lower and higher frequency poles con-

verge with no change in damping, then split and approach asymptotic

trajectories at angles of ±π/4 and ±3π/4. Unstable when poles enter right

half-plane.

Re(s)

Im(s)

Good explanation of what happened.

Try proportional plus derivative control.



Proportional Plus Derivative Control

Proportional plus derivative performance is better.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses:



Classical Control

Root Locus: Increase Kp while holding Kd = Kp/0.7. Derivative term adds

a zero and changes the asymptotic behavior, but closed-loop system still

goes unstable.

Re(s)

Im(s)

Good explanation of what happened – but how do we make it faster?

Try state-space approach.



State-Space Control with Full-State Feedback

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t) − x1(t)

)
− k
(
x1(t) − x2(t)

)
− bẋ1(t)

fm2 = mẍ2(t) = k
(
x1(t) − x2(t)

)
− bẋ2(t)

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)



State-Space Control

A state-space controller can work better.

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Although a bit slow, the response is at least monotonic.



State-Space Control

Better performance results with feedback from the internal mass (x1) than

with feedback from the output mass (x2)!

Left panels show results when feedback is from lower (output) mass only.

Right panels show results when feedback is from upper (internal) mass only.

• displacement of upper (internal) mass shown in blue

• displacement of lower (output) mass shown in gold



Beyond State-Space Control

However, to feed back information about x1(t), we must measure x1(t).

What if it’s not possible to measure x1(t).

Idea: Could we simulate the unmeasured states?



Observers

An observer is a simulation of the plant that can provide information

about unmeasured states. This simulation will be part of the controller!

+B

∫
C

A
plant

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

+B

∫
C

A
simulation

+B

∫
C

A

ŷ(t)
x̂(t)˙̂x(t)



Observers

We can build state-space controllers for both the plant and the simulation.

The simulation then provides estimates of the state (x̂(t)) and input (û(t)).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

Then if feedback from all of the states in x(t) is not possible ...

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

... we can substitute the simulated states x̂(t) for the missing states x(t).

Similarly, we can substitute û(t) for u(t) as well.

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−

Kx̂(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

The resulting controller takes advantage of all of the states in x(t) without

measuring them. Really? Sounds a bit too good to be true!

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)



Last Time: Using Feedback to Reduce Tracking Errors

Recall the problem we discussed last time with using Kr to adjust the

overall gain of a state-space controller.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

This method uses Kr to anticipate and pre-correct unwanted offsets in the

rest of the system.

Using Kr to eliminate tracking errors is a feed-forward approach!

A better approach is to incorporate a new state variable w(t) to monitor

tracking errors and then use feedback to reduce w(t) and thereby tracking

error to zero.



Observers

Here, it’s not only Kr but also the entire simulation of the plant that is

intended to anticipate and pre-correct deficiencies of the plant.

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)



Observers

Fortunately, we can use feedback to correct simulation errors!

Calculate the difference between y(t) and ŷ(t).

Then use that signal (times L) to correct ˙̂x(t).

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Analyzing the Observer Model

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−

Which (if any) of the following expressions are correct?

1. ẋ(t) = Ax̂(t) −BKx(t) +BKryd(t)
2. ẋ(t) = Ax(t) −BKx(t) +BKryd(t)
3. ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t)−ŷ(t))
4. ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t)
5. ˙̂x(t) = ẋ(t)



Observers

Plant dynamics: ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
Simulation dynamics: ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t)−ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−

We can analyze the model with a combined state vector x+(t) =
[
x(t)
x̂(t)

]



Observers

Combined dynamics of the plant and observer.

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L

(
y(t)−ŷ(t)

)
Define e(t) to be the difference between the plant and simulation states:

e(t) = x(t) − x̂(t)
Subtract ˙̂x(t) from ẋ(t) to find the derivative of e(t):

ė(t) = Ae(t) − L
(
y(t)−ŷ(t)

)
= Ae(t) − LCe(t)

Append the ẋ(t) and ė(t) to make a new combined state vector:[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

Notice that the resulting matrix equation has the same form as the original

state evolution equation:

ẋ(t) = Ax(t) +Bu(t)
where A,B, and x(t) have been extended to include error terms.



Observers

Combined dynamics of the plant and observer.[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

The poles of this system are the roots of its characteristic equation:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ = 0

Because the evolution matrix has block triangular form, the characteristic

equation can be factored into two parts:∣∣∣sI−
[
A−BK BK

0 A−LC

] ∣∣∣ =
∣∣∣sI− (A−BK)

∣∣∣×
∣∣∣sI− (A−LC)

∣∣∣ = 0

and the poles of the augmented system are the union of the poles of the

plant and simulation dynamics.

Furthermore, the poles of the plant and observer can be chosen indepen-

dently, so we can pick an L to give fast decay of observer state errors (going

from x(t) to x̂(t)) relative to tracking errors (going from yd(t) to y(t)).



Linear Quadratic Regulator (LQR)

The LQR method minimizes a cost function J that describes the relative

cost (or badness) of inputs u(t) and responses x(t).

The cost function J is the time integral of a weighted sum of the squares

of state variables x(t) and input u(t)

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint: u(t) = −Kx(t).

and Q and R represent weights.

The “optimal” K is given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0



Linear Quadratic Regulator (LQR) – Redux!

The LQR method minimizes a cost function J ′ that describes the relative

cost (or badness) of output errors y(t)−ŷ(t) and state errors ê(t).

The cost function J ′ is the time integral of a weighted sum of the squares

of the state errors e(t) and output variables y(t) − ŷ(t)

J ′ =
∫ ∞

0

(
e(t)TQe(t) + (y(t)−ŷ(t))T R (y(t)−ŷ(t)

)
dt

where (y(t)−ŷ(t)) and e(t) are related

• by a state transition equation: ė(t) = Ae(t) − L(y(t) − ŷ(t)) and

• by the feedback constraint: y(t)−ŷ(t) = Ce(t).

and Q and R represent weights.

The “optimal” L is given by

LT = R−1CS

where S is the symmetric n×n solution to the algebraic Riccati equation:

AS+ SAT − SCTR−1CS+Q = 0



Choosing L

Since optimizing K and L can be cast into problems with the same form,

the optimizations can be solved using the same methods.

K = place(A,B,[poles])
L = place(A.’,C.’,[poles]).’

or

K = lqr(A,B,Qk,Rk)
L = lqr(A.’,C.’,Ql,Rl).’



Summary

Today we formulated a new approach to control based on observers.

• An observer is a simulation of the plant that is part of the controller.

• The biggest challenge in designing an observer is keeping its state up-

to-date with that of the plant.

• We can feedback the difference between the measured and simulated

outputs to correct the simulated states.


