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Modern Control

State-Space Approach

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Plant: state matrix A, input vector B, and output vector C:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Feedback is characterized by a feedback vector K and input scaler Kr:

u(t) = Kryd(t)−Kx(t)
Combine to obtain closed-loop characterization:

ẋ(t) =
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)



From State-Space to Transfer Function

Find the transfer function representation from the state-space description.

Start with the state equation:

ẋ(t) = Acx(t)+Bcu(t)
Consider the input u(t) and state x(t) at a particular complex frequency s:

u(t) = U(s)est and x(t) = X(s)est

Find H(s) at the same complex frequency.

sX(s)est = AcX(s)est +BcU(s)est

sX(s) = AcX(s) +BcU(s)

(sI−Ac)X(s) = BcU(s)

X(s) = (sI−Ac)−1BcU(s)

Y (s) = CcX(s) = Cc(sI−Ac)−1BcU(s)

H(s) = Y (s)
U(s) = Cc(sI−Ac)−1Bc



State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?

H(s) = Y (s)
X(s) = Cc(sI−A)−1Bc = Cc

adj(sI−A)
|sI−A|

Bc

If |sI−A| = 0, H(s) is unbounded and therefore |Y (s)| → ∞.

The natural frequencies are the solutions to the characteristic equation:∣∣∣s I−Ac

∣∣∣ = 0



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

xh(t) = ePt	

Particular solution: xp(t) = �

ẋp(t) = 0 = P�+Q

� = −P−1Q (provided that P is not singular)

Initial condition: x(0) = 	− P−1Q = 0

	 = P−1Q

Step response:

xs(t) = (ePt − I)P−1Q

= P−1(ePt − I)Q

Exponential functions play important role in solving matrix diff eq’s.



Computing Matrix Exponentials

A matrix exponential can always be found from its series expansion:

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·
To avoid computing infinite sums, we can diagonalize the matrix P.

Start with the eigenvector/eigenvalue property:

Pvi λivi

where λi is the ith eigenvalue and vi is the ith eigenvector (a column vector).

Assemble the eigenvectors into an eigenvector matrix:

V =
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]

and the eigenvalues into an eigenvalue matrix:

� =

λ1
λ2

. . .


If P is full rank and if none of the eigenvalues are repeated

P = V�V−1

eP = Ve�V−1



Controller Design

Optimizing the gains K and Kr of a state-space controller.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Last time we reviewed two examples of classical design.



Root-Locus Analysis of Proportional Control

u(t)

y(t)

Consider the closed-loop poles s1, s2 =
−b±

√
b2 − 4mk(1+Kp)

2m
when m = 1, b = 1.4, k = 2, and Kp increases from 0 to ∞.

Re(s)

Im(s)

As Kp ↑, frequency of ringing ↑, but peaks decay with same time constant.



Root-Locus Analysis of PD Control

Increasing Kd enables faster closed-loop poles (red dots) without overshoot.

s =
−b−kKd ±

√
(b+kKd)2 − 4mk(1+Kp)

2m
m = 1; b = 1.4; k = 2; Kd = 1, 2, 3; Kp: 0→∞.

Re(s)

Im(s)

Re(s)

Im(s)

Re(s)

Im(s)



More Advanced Methods in Classical Control

Derivative feedback is just one way to optimize a classical controller.

Other advanced classical methods include

• integral feedback for PID control,

• optimizing gain and phase margins,

• lead compensation, lag compensation, lead/lag compensation, and

• many other techniques.

How well do these methods translate to state space?



Check Yourself: Proportional Control in State Space

Choose K and Kr so that the state-space controller:

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

is equivalent to a proportional controller:

+ Kp G(s) = Y (s)
U(s)−

yd(t) y(t)
u(t)

What K and Kr implement a proportional controller?

1. K=KrC and Kr = Kp 2. K=CB and Kr = 1
3. K=C and Kr = Kp 4. K=KpC and Kr = Kp

5. none of the above



Proportional Plus Derivative Control in State-Space

Start with a classical system with PD control:

+ Kp+Kd
d
dt−

plant
(classical description)

yd(t) y(t)
u(t)

Replace classical description of plant with equiv. state-space description:

+ Kp+Kd
d
dt C

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Distribute the PD controller over the inputs to the subtractor:

+ CKp+Kd
d
dt

Kp+Kd
d
dt

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Feedback x(t) instead of y(t):

+Kp+Kd
d
dt C

KpC+KdC
d
dt

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Result is a state-space controller with Kr=Kp+Kd
d
dt and K=KpC+KdC

d
dt .



More Advanced Methods in Classical Control

Much of the design power of the more advanced methods results from their

ability to move poles and zeros to locations that are more favorable for

• stability,

• disturbance rejection,

• noise immunity, etc.

We can similarly optimize state-space controllers.

And the state-space formulation is much more powerful!



Pole Placement

With the correct choice of gains K and Kr, we can move the closed-loop

poles of a state-space model anywhere in the complex plane.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:∣∣∣sI−(A−BK)
∣∣∣ = 0

Fundamental theorem of algebra: an nth order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

→ characteristic polynomial can be written as a product of first-order terms:∣∣∣sI−(A−BK)
∣∣∣ =

n∏
i=1

(s−si) = 0

LHS: nth order polynomial in s (pole locations)

RHS: same polynomial, but coeff’s in terms of desired pole locations si.



Example: Pole Placement for Mass-Spring-Dashpot

u(t)

y(t)

Plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Rewrite this second-order differential equation as two first-order equations:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

which can be expressed as a single matrix equation:

ẋ(t) = Ax(t) +Bu(t)



Example: Pole Placement for Mass-Spring-Dashpot

For m = 1, b = 1.4, and k = 2:

A =
[

0 1
−2 −1.4

]
B =

[
0
2

]
With K = [ k1 k2 ]:

|sI−(A−BK)| =
∣∣∣∣[ s −1

2+2k1 s+1.4+2k2

]∣∣∣∣ = s2+(1.4+2k2)s+(2+2k1)

To place poles at s = –0.5 and s = –1, set

s2+(1.4+2k2)s+(2+2k1) = (s+0.5)(s+1) = s2+1.5s+0.5
→ k1 = −0.75 and k2 = 0.05.

Alternatively, to place poles at s = –0.5 and s = –0.6, set

s2+(1.4+2k2)s+(2+2k1) = (s+0.5)(s+0.6) = s2+1.1s+0.3
→ k1 = −0.85 and k2 = −0.15.



Check Yourself

Let A represent the system matrix and B represent the input matrix

for a state-space control system, where these matrices are given by

A =
[

1 1
0 1

]
B =

[
0
1

]

Which K vector will produce closed-loop poles at 0 and −2?

1. K = [ 1 2 ] 2. K = [ 3 4 ] 3. K =
[

1
2

]
4. K =

[
3
4

]
5. none of the above



Pole Placement

With full-state feedback, the gains K can be adjusted to produce ANY set

of n closed-loop poles! → much more powerful than classical methods!

The design problem shifts ...

• from finding gains to optimize pole locations (classical view)

• to finding pole locations to optimize performance (modern view).



Example: Optimizing Performance

u(t)

y(t)
Plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Express differential equation as a first-order matrix differential equation:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

Decide where to put the two closed-loop poles si:

|sI−(A−BK)| =
n∏

i=1
(s−si) = 0



Example: Optimizing Performance

We can place the poles anywhere – which places are best?

Which pole pair is better: left, center, or right column?

Warning: This is a trick question.



Example: Optimizing Performance

Complex poles can reduce initial displacement without sacrificing speed.

How can we systematically find good pole locations?



Example: Optimizing Performance

How do we find the “best” pole locations?

Which is better: a small input or a fast response?

– comparing apples to oranges!



Cost Functions

More generally, we can define a cost function to assign a real-valued

penalty to all possible scenarios.

• cost: 1 point per dollar + 1/10 point per minute

mode dollars time cost

walk $0.00 3h 50m 23

bike $10.00 1h 4m 16.4

subway/bus $2.40 1h 2m 8.6

auto $38.33 46m 42.93

What would you optimize?

• dollars

• time

• something else?



Cost Functions for the Mass-Spring-Dashpot

We could assign costs based on x(t) or peak value of y(t).
∫

12 dt

A better cost function might consider entire time functions (x(t) and y(t)).



Cost Functions for the Mass-Spring-Dashpot

Mean squares: integrate squared errors:
∫

(desired-measured)2 dt.

Squaring penalizes both positive and negative errors,

and it’s mathematically tractible.



Quadratic Cost Functions

Define a cost function J that depends on the integral of the squares of the

elements of x(t) and u(t):

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where Q and R are matrix constants that we can choose so as to weight

errors in each component of x(t) and u(t) differently.

The goal will be to find the gain matrices K and Kr to minimize J .



Check Yourself

Consider the cost function

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

when x(t) =
[
x1(t)
x2(t)

]
and u(t) is a scalar. Find Q and R so that

•
∞∫
0
x2

1(t) dt is weighted twice as much as
∞∫
0
u2(t) dt, and

•
∞∫
0
x2

2(t) dt is weighted three times as much as
∞∫
0
u2(t) dt.

Which (if any) of the following satisfy these weights?

1. Q =
[

1 0
0 1

]
, R =

[
2 0
0 3

]
2. Q =

[
2 0
0 3

]
, R =

[
1 0
0 1

]
3. Q =

[
2 0
0 3

]
, R = [1] 4. Q =

[√
2 0

0
√

3

]
, R = [1]

5. none of the above



Linear Quadratic Regulator (LQR1)

We want to find the gain matrix K that minimizes the cost function

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint (for homogeneous case): u(t) = −Kx(t).

The “optimal” K can be shown to be given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

quadratic regulation of a linear system1



Algebraic Riccati Equation

Let A=
[

1 0
0 2

]
, B=

[
1
1

]
, Q=

[
2 0
0 3

]
, and R=[ 1 ].

Find the matrix S that satisfies the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

[ 1 0
0 2

] [
a b

b c

]
+
[

a b

b c

] [ 1 0
0 2

]
−
[

a b

b c

] [ 1
1

]
[ 1 ] [ 1 1 ]

[
a b

b c

]
+
[ 2 0

0 3

]
=
[ 0 0

0 0

]
[

a b

2b 2c

]
+
[

a 2b

b 2c

]
−
[

a b

b c

] [ 1 1
1 1

] [
a b

b c

]
+
[ 2 0

0 3

]
=
[ 0 0

0 0

]
[

a b

2b 2c

]
+
[

a 2b

b 2c

]
−
[ (a+b)2 (a+b)(b+c)

(a+b)(b+c) (b+c)2

]
+
[ 2 0

0 3

]
=
[ 0 0

0 0

]
[ (a+b)2 (a+b)(b+c)

(a+b)(b+c) (b+c)2

]
=
[ 2a+2 3b

3b 4c+3

]

These equations are nonlinear, so there are multiple solutions (4 here):

S =
[ 40.293 −49.381

−49.381 65.682

]
or

[ 8.569 −4.194
−4.194 1.318

]
or

[−0.059 1.431
1.431 1.699

]
or

[−0.782 0.122
0.122 −0.674

]
.



Algebraic Riccati Equation

Let A=
[

1 0
0 2

]
, B=

[
1
1

]
, Q=

[
2 0
0 3

]
, and R=[ 1 ].

Then the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

has four possible solutions (row 1 below).

Each possible solution S corresponds to a different gain matrix K (row 2):

K = R−1BTS

Each gain matrix K generates a different set of eigenvalues (row 3 below).

solution 1 solution 2 solution 3 solution 4

S :
[ 40.293 −49.381

−49.381 65.682

] [ 8.569 −4.194
−4.194 1.318

] [−0.059 1.431
1.431 1.699

] [−0.782 0.122
0.122 −0.674

]
gain K : [ −9.088 16.301 ] [ 4.375 −2.876 ] [ 1.372 3.130 ] [ −0.660 −0.552 ]

poles s1, s2: (−1.357, −2.856) (−1.356, 2.857) (1.356, −2.857) (1.356, 2.856)

Which (if any) of these solutions should we select?



LQR Solution

Fortunately there are efficient algorithms for solving the LQR problem.

Given the state-space matrices A and B and the LQR weights Q and R,

the following Python code

> from control import lqr
> K,S,E = lqr(A,B,Q,R)

and MATLAB code

> K,S,E = lqr(A,B,Q,R);

finds the optimal solutions and returns

• K: state feedback gains,

• S: solution to the algebraic Riccati equation, and

• E: eigenvalues of the resulting closed loop system.



Example: Two-Spring System

The plant consists of two springs and two masses.

The goal is to move the input u(t) = x0(t) so as to move the bottom mass

to a desired location x2(t) = yd(t).

x0(t)

x1(t)

x2(t)



Classical Control

A classical controller for this problem has the following form.

+ K(s)
−

two-spring
system

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

To solve this classical control problem, we must

• find the equations of motion for the plant (the two-spring system) and

• express those equations in terms of a transfer function.



Check Yourself

x0(t)

x1(t)

x2(t)

Which plot (if any) shows the poles of the two-spring system?

Re

Im1.

Re

Im2.

Re

Im3.

Re

Im4.



Two-Spring System

Equations of motion.

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(
x0(t)−x1(t)

)
− k
(
x1(t)−x2(t)

)
− bẋ1(t)−mg

fm2 = mẍ2(t) = k
(
x1(t)−x2(t)

)
− bẋ2(t)−mg

mass m = 1, stiffness k = 2, damping b = 1.4.

Positions x1(t) and x2(t) result from two separable inputs: gravity mg, which

generates constant offsets, and x0(t), which determines the dynamics.



Two-Spring System

Transfer function.Equations

x0(t)

x1(t)

x2(t)

H(s) = X2(s)
X0(s) = k2

(s2m+ sb+ 2k)(s2m+ sb+ k)− k2



Classical Control

A proportional controller has the following form.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

The feedback system is stable for only a small range of gains: Kp<2.7

Step responses:

Slow convergence and large oscillatory overshoots.

Why such poor behavior?



Classical Control

Root Locus: As Kp increases, the lower and higher frequency poles con-

verge with no change in damping, then split and approach asymptotic

trajectories at angles of ±π/4 and ±3π/4. Unstable when poles enter right

half-plane.

Re(s)

Im(s)

Good explanation of what happened.

Try proportional plus derivative control.



Classical Control

Proportional plus derivative performance is only slightly better.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses:

Somewhat smaller overshoot, but still slow convergence.



Classical Control

Root Locus: Increase Kp while holding Kd = Kp/0.7. Derivative term adds

a zero and changes the asymptotic behavior, but closed-loop system still

goes unstable.

Re(s)

Im(s)

Good explanation of what happened.

But how do we make it faster?



State-Space Control

Try state-space control.

Start with flat parameters Q = diag([1, 1, 1, 1]) and R = [[1]].

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Convergence is slow but monotonic. Can we make it faster?



State-Space Control

Try different values of Q and R.

Increasing all values of Q doesn’t have a big effect.

Setting Q to zero for velocity terms increases speed and overshoot.



State-Space Control

Try different values of Q and R.

Reducing x1 cost causes large change in x1 and faster convergence of x2.

Reducing x2 cost speeds x1 with little effect on x2.



Summary

State-Space controllers offer design advantages over classical controllers.

With full-state feedback, the gains K can be adjusted to produce ANY set

of n closed-loop poles! → much more powerful than classical methods!

The design problem shifts ...

• from finding gains to optimize pole locations (classical view)

• to finding pole locations to optimize performance (modern view).

The LQR algorithm provides intuitive control of the relative importance of

errors in each state and the amount of effort exerted on the plant.


