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State-Space Responses

• Step Response

• Matrix Exponentials
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State-Space Approach

Last week, we introduced the State-Space approach to control:

• Describe a system by its states.

• Describe dynamics of a system by first-order relations among states.

• Collect the states and relations in a single first-order matrix equation.

Kr + ẋ(t) = Ax(t) +Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

Plant: state matrix A, input vector B, and output vector C:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Feedback is characterized by a feedback vector K and input scaler Kr:

u(t) = Kryd(t)−Kx(t)
Combine to obtain closed-loop characterization:

ẋ(t) =
(
A−BK

)
x(t) +BKryd(t) ≡ Acx(t) +Bcyd(t)



From State-Space to Transfer Function

Find the transfer function representation from the state-space description

(similar to finding natural frequencies but Bc 6= 0).

Start with the state equation:

ẋ(t) = Acx(t)+Bcu(t)
Consider the input u(t) and state x(t) at a particular complex frequency s:

u(t) = U(s)est and x(t) = X(s)est

Find H(s) at the same complex frequency.

sX(s)est = AcX(s)est +BcU(s)est

sX(s) = AcX(s) +BcU(s)

(sI−Ac)X(s) = BcU(s)

X(s) = (sI−Ac)−1BcU(s)

Y (s) = CcX(s) = Cc(sI−Ac)−1BcU(s)

H(s) = Y (s)
U(s) = Cc(sI−Ac)−1Bc



From State-Space to Transfer Function

Example: find the open-loop transfer function

H(s) = Y (s)
U(s) = C(sI−A)−1B

for mass-spring-dashpot system.

A =
[

0 1
−k/m −b/m

]
B =

[
0

k/m

]
C = [ 1 0 ]

H(s) = [ 1 0 ]
[

s −1
k/m s+b/m

]−1 [ 0
k/m

]

= [ 1 0 ] 1
s2 + sb/m+ k/m

[
s+b/m 1
−k/m s

] [ 0
k/m

]

= 1
s2 + sb/m+ k/m

[ s+b/m 1 ]
[ 0
k/m

]
= k/m

s2 + sb/m+ k/m

√

The denominator (and therefore poles) come from
∣∣∣sI−A∣∣∣.



State-Space Analysis of Natural Frequencies

Are there frequencies s for which large outputs result when input u(t)=0?

H(s) = Y (s)
X(s) = Cc(sI−A)−1Bc = Cc

adj(sI−A)
|sI−A|

Bc

If |sI−A| = 0, H(s) is unbounded and therefore |Y (s)| → ∞.

The natural frequencies are the solutions to the characteristic equation:∣∣∣s I−Ac

∣∣∣ = 0

Example: mass-spring-dashpot system:

Ac = A−BK =
[

0 1
−k/m −b/m

]
−
[

0
k/m

]
[K1 K2 ]

|s I−Ac| =
∣∣∣∣[ s −1
k(1+K1)/m s+(b+kK2)/m

]∣∣∣∣ = 0

Characteristic equation: s2 + (b+kK2)s/m+ k(1+K1)/m = 0
√



Check Yourself

A state-space controller is represented by the following equations:

ẋ(t) = Ax(t) +Bu(t)
u(t) = Kryd(t)−Kx(t)
y(t) = Cx(t)

Which block diagrams (below) correspond to the equations?

1. Kr + B + 1
s C

A

K

−

2. BKr + + 1
s C

A

BK

−

3. BKr + 1
s C

A−BK



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

If this were a scalar equation:

ẋh(t) = pxh(t)
then the solution would be an exponential function of time:

xh(t) = αept

Is there a matrix version of the exponential time function ept?



Scalar Exponential Function

Exponential functions are eigenfunctions of the derivative operator:

d

dt
ept pept

Express the exponential function as a power series:

ept = 1 + pt

1! + p2t2

2! + p3t3

3! + · · ·

Differentiate term-by-term:

d

dt
ept = 0 + p

1! + 2p2t

2! + 3p3t2

3! + · · ·

= p+ p
pt

1! + p
p2t2

2! + p
p3t3

3! + · · ·

= p
(

1 + pt

1! + p2t2

2! + p3t3

3! + · · ·
)

= pept
√



Matrix Exponential Function

Matrix exponentials are eigenfunctions of the matrix derivative operator:

d

dt
ePt

PePt

The matrix exponential function can also be expanded as a power series:

ePt = I+ Pt

1! + P2t2

2! + P3t3

3! + · · ·

Differentiate term-by-term:

d

dt
ePt = 0 + P

1! + 2P2t

2! + 3P3t2

3! + · · ·

= P+ P
Pt

1! + P
P2t2

2! + P
P3t3

3! + · · ·

= P
(
I+ Pt

1! + P2t2

2! + P3t3

3! + · · ·
)

= PePt = ePtP
√



Step Response

Find the step response xs(t) of the following matrix system equation:

ẋ(t) = Px(t) +Qu(t)
Assume the initial value of the step response xs(0) = 0, and u(t)=1 for t>0.

Homogeneous equation: ẋh(t) = Pxh(t)

xh(t) = ePt	

Particular solution: xp(t) = �

ẋp(t) = 0 = P�+Q

� = −P−1Q (provided that P is not singular)

Initial condition: x(0) = 	− P−1Q = 0

	 = P−1Q

Step response:

xs(t) = (ePt − I)P−1Q

= P−1(ePt − I)Q

Exponential functions play important role in solving matrix diff eq’s.



Computing Matrix Exponentials

Finding the series expansion of a matrix exponential

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·
is easy when P is diagonal:

P =

λ1

λ2
. . .



eP =

 1
1

. . .

+

λ1

λ2
. . .

+ 1
2!

λ1

λ2
. . .


2

+ · · ·

=

 1
1

. . .

+

λ1

λ2
. . .

+ 1
2!

λ
2
1

λ2
2

. . .

+ · · ·

=

 1 + λ1 + λ2
1/2! + · · ·

1 + λ2 + λ2
2/2! + · · ·

. . .

 =

 e
λ1

eλ2
. . .





Computing Matrix Exponentials

Fortunately it’s easy to diagonalize a matrix that is full-rank and has

distinct eigenvalues. Start with the eigenvector/eigenvalue property:

Pvi λivi
Pvi = λivi

where λi is the ith eigenvalue and vi is the ith eigenvector (a column vector).

If P is full rank and if none of the eigenvalues are repeated

P
[
v1|v2|v3| · · · |vn

]
=
[
Pv1|Pv2|Pv3| · · · |Pvn

]
=
[
λ1v1|λ2v2|λ3v3| · · · |λnvn

]
=
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]λ1

λ2
. . .


PV = V�

P = V�V−1

where V =
[
v1

∣∣∣v2

∣∣∣v3

∣∣∣ · · · ∣∣∣vn
]

and � =

λ1
λ2

. . .

.



Computing Matrix Exponentials

Substitute the diagonal expansion of P:

P = V�V−1

into the series expansion of eP:

eP = I+ P+ P2/2! + P3/3! + P4/4! + · · ·

= I+
d

dt
ePt

PePt
+ 1

2!

d

dt
ePt

PePt d

dt
ePt

PePt
+ 1

3!

d

dt
ePt

PePt d

dt
ePt

PePt d

dt
ePt

PePt
+ · · ·

= I+V�V−1 + 1
2!V�

Pvi λivi�V−1 + 1
3!V�

Pvi λivi� Pvi λivi�V−1 + · · ·

= I+V�V−1 + 1
2!V�

2V−1 + 1
3!V�

3V−1 + · · ·

= VV−1 +V�V−1 + 1
2!V�

2V−1 + 1
3!V�

3V−1 + · · ·

= V

(
I+�+ 1

2!�
2 + 1

3!�
3 + · · ·

)
V−1

= Ve�V−1

The matrix exponential of P can be directly computed from the eigenvalues

and eigenvectors of P.



Computing Matrix Exponentials: Example

Determine ePt for P =
[

0 1
−2 −3

]
.

Step 1: Find the eigenvalues of P: −1 and −2.

Step 2: Find the eigenvectors of P:

[
1
−1

]
and

[
1
−2

]
.

Step 3: Find ePt = Ve�tV−1.

ePt =
[ 1
−1

∣∣∣ 1
−2

] [
e−t 0
0 e−2t

] [ 1
−1

∣∣∣ 1
−2

]−1

=
[ 1 1
−1 −2

] [
e−t 0
0 e−2t

] [ 2 1
−1 −1

]

=
[
e−t e−2t

−e−t −2e−2t

] [ 2 1
−1 −1

]

=
[ 2e−t−e−2t e−t−e−2t

−2e−t+2e−2t −e−t+2e−2t

]



Check Yourself

Let

P =
[

0 1
−1 0

]

Which of the following matrices equals ePt?

1.

[
ejt e−jt

e−jt ejt

]
2.

[
cos(t) sin(t)
− sin(t) cos(t)

]

3.

[
et e−t

e−t et

]
4.

[
tet te−t

te−t tet

]
5. none of the above



Controller Design

Optimizing the gains K and Kr of a state-space controller.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)



Controlling a Mass-Spring-Dashpot

Start by reviewing how we chose gains for a classical controller.

u(t)

y(t)

Model the mass-spring-dashpot system (Newton’s Law):

k
(
x(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

to get the (open loop) transfer function of the plant:

G(s) = Y (s)
X(s) = k

s2m+ sb+ k



Proportional Control of a Mass-Spring-Dashpot

Start by reviewing how we chose gains for a classical controller.

u(t)

y(t)

Proportional control:

+ Kp
k

s2m+ sb+ k−
Yd(s) Y (s)

X(s)

Closed-loop transfer function:

H(s) = Y (s)
Yd(s)

= kKp

s2m+ sb+ k(1+Kp)

Closed-loop poles are roots of denominator: s1, s2 =
−b±

√
b2 − 4mk(1+Kp)

2m



Root-Locus Analysis of Proportional Control

u(t)

y(t)

Consider the closed-loop poles s1, s2 =
−b±

√
b2 − 4mk(1+Kp)

2m
when m = 1, b = 1.4, k = 2, and Kp increases from 0 to ∞.

Re(s)

Im(s)

As Kp ↑, frequency of ringing ↑, but peaks decay with same time constant.



Proportional Plus Derivative Control

Adding a derivative term helps.

u(t)

y(t)

Same open-loop transfer function, different controller:

+ Kp+sKd
k

s2m+ sb+ k−
Yd(s) Y (s)

X(s)

Closed-loop transfer function:

H(s) = Y (s)
Yd(s)

= k(Kp+sKd)
s2m+ s(b+ kKd) + k(1+Kp)

Closed-loop poles: s =
−b−kKd ±

√
(b+kKd)2 − 4mk(1+Kp)

2m



Root-Locus Analysis of PD Control

Increasing Kd enables faster closed-loop poles (red dots) without overshoot.

s =
−b−kKd ±

√
(b+kKd)2 − 4mk(1+Kp)

2m
m = 1; b = 1.4; k = 2; Kd = 1, 2, 3; Kp: 0→∞.

Re(s)

Im(s)

Re(s)

Im(s)

Re(s)

Im(s)



More Advanced Methods in Classical Control

Derivative feedback is just one way to optimize a classical controller.

Other advanced classical methods include

• integral feedback for PID control,

• optimizing gain and phase margins,

• lead compensation, lag compensation, lead/lag compensation, and

• many other techniques.

Much of the design power of these advanced methods results from their

ability to move poles and zeros to locations that are more favorable for

• stability,

• disturbance rejection,

• noise immunity, etc.

We can similarly optimize state-space controllers.

And the state-space formulation is much more powerful!



Stopped Here



Check Yourself: Proportional Control in State Space

Choose K and Kr so that the state-space controller:

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

is equivalent to a proportional controller:

+ Kp G(s) = Y (s)
U(s)−

yd(t) y(t)
u(t)

What K and Kr implement a proportional controller?

1. K=KrC and Kr = Kp 2. K=CB and Kr = 1
3. K=C and Kr = Kp 4. K=KpC and Kr = Kp

5. none of the above



Proportional Plus Derivative Control in State-Space

Start with a classical system with PD control:

+ Kp+Kd d
dt−

plant
(classical description)

yd(t) y(t)
u(t)

Replace classical description of plant with equiv. state-space description:

+ Kp+Kd d
dt C

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Distribute the PD controller over the inputs to the subtractor:

+ CKp+Kd d
dt

Kp+Kd d
dt

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Feedback x(t) instead of y(t):

+Kp+Kd d
dt C

KpC+KdC d
dt

−
plant

(state-space desc)
yd(t) y(t)

u(t) x(t)

Result is a state-space controller with Kr=Kp+Kd ddt and K=KpC+KdC d
dt .



More Advanced Methods in Classical Control

Much of the design power of the more advanced methods results from their

ability to move poles and zeros to locations that are more favorable for

• stability,

• disturbance rejection,

• noise immunity, etc.

We can similarly optimize state-space controllers.

And the state-space formulation is much more powerful!



Pole Placement

With the correct choice of gains K and Kr, we can move the closed-loop

poles of a state-space model anywhere in the complex plane.

Kr + ẋ(t)=Ax(t)+Bu(t) C

K

−
yd(t) y(t)

x(t)u(t)

The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:∣∣∣sI−(A−BK)
∣∣∣ = 0

Fundamental theorem of algebra: an nth order polynomial as n roots.

Factor theorem: each root determines a first-order factor.

→ characteristic polynomial can be written as a product of first-order terms:∣∣∣sI−(A−BK)
∣∣∣ =

n∏
i=1

(s−si) = 0

LHS: nth order polynomial in s (pole locations)

RHS: same polynomial, but coeff’s in terms of desired pole locations si.



Example: Pole Placement for Mass-Spring-Dashpot

u(t)

y(t)

Plant:

k
(
u(t)−y(t)

)
− bẏ(t)︸ ︷︷ ︸

F

= mÿ(t)︸ ︷︷ ︸
ma

Rewrite this second-order differential equation as two first-order equations:

d

dt

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
ẋ(t)

=
[

0 1
−k/m −b/m

]
︸ ︷︷ ︸

A

[
y(t)
ẏ(t)

]
︸ ︷︷ ︸
x(t)

+
[

0
k/m

]
︸ ︷︷ ︸
B

u(t)

which can be expressed as a single matrix equation:

ẋ(t) = Ax(t) +Bu(t)



Example: Pole Placement for Mass-Spring-Dashpot

For m = 1, b = 1.4, and k = 2:

A =
[

0 1
−2 −1.4

]
B =

[
0
2

]
With K = [ k1 k2 ]:

|sI−(A−BK)| =
∣∣∣∣[ s −1

2+2k1 s+1.4+2k2

]∣∣∣∣ = s2+(1.4+2k2)s+(2+2k1)

To place poles at s = –0.5 and s = –1, set

s2+(1.4+2k2)s+(2+2k1) = (s+0.5)(s+1) = s2+1.5s+0.5
→ k1 = −0.75 and k2 = 0.05.

Alternatively, to place poles at s = –0.5 and s = –0.6, set

s2+(1.4+2k2)s+(2+2k1) = (s+0.5)(s+0.6) = s2+1.1s+0.3
→ k1 = −0.85 and k2 = −0.15.



Check Yourself

Let A represent the system matrix and B represent the input matrix

for a state-space control system, where these matrices are given by

A =
[

1 1
0 1

]
B =

[
0
1

]

Which K vector will produce closed-loop poles at 0 and −2?

1. K = [ 1 2 ] 2. K = [ 3 4 ] 3. K =
[

1
2

]
4. K =

[
3
4

]
5. none of the above



Pole Placement

With full-state feedback, the gains K can be adjusted to produce ANY set

of n closed-loop poles! → much more powerful than classical methods!

The design problem shifts ...

• from finding gains to optimize pole locations (classical view)

• to finding pole locations to optimize performance (modern view).

Examples: Next Lecture


