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Estimation of System Properties

Recap: First Order Systems

In the previous lectures, we discussed how to solve first order systems:

y[n] = λy[n− 1] + bx[n− 1].

We saw how the natural frequency, λ, determines the stability,
steady-state, and convergence of our system.

We analyzed the zero state response and saw how linearity and
time-invariance allow us to study arbitrary driving signals.
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Estimation of System Properties

Recap: First Order with Loss

We made progress towards designing a “realistic” system which
includes some loss:

y[n] = (1 + ∆Tβ)y[n− 1] + γ∆Tu[n− 1].

y[n] is the output of our system, e.g., the measured temperature,

u[n] is the control signal we design,

∆T relates to the sampling rate of the microcontroller,

The parameters β and γ are system properties that we want to
measure.
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Estimation of System Properties

Method for Measuring β, γ

We can design a reasonable control signal u[n] with the goal of
measuring β, γ.

In particular, with this goal we don’t care about stability,
following some trajectory, etc.

y[n] = (1 + ∆Tβ)y[n− 1] + γu[n− 1].

Let’s try two choices for u[n]:

Feedback: u[n] = Kp(x[n]− y[n]),

Feedforward: u[n] = Kffx[n].
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Estimation of System Properties

Feedback Control, β, and γ

Given the feedback controller u[n] = Kp(x[n]− y[n]), the system
equation becomes:

y[n] = (1 + ∆Tβ)y[n− 1] + γ∆Tu[n− 1],

y[n] = (1 + ∆Tβ)y[n− 1] + γ∆TKp(x[n− 1]− y[n− 1]),

y[n] = (1 + ∆Tβ − γ∆TKp)︸ ︷︷ ︸
λ

y[n− 1] + γ∆TKpx[n− 1].

A bit problematic; the natural frequency changes as we change Kp.
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Estimation of System Properties

Feedforward Control, β, and γ

Given the feedforward controller u[n] = Kffx[n], the system equation
becomes:

y[n] = (1 + ∆Tβ)y[n− 1] + γ∆Tu[n− 1],

y[n] = (1 + ∆Tβ)︸ ︷︷ ︸
λ

y[n− 1] + γ∆TKffx[n− 1].

Much better! Now, we can estimate λ to back-calculate β.
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Estimation of System Properties

Deriving β from Computing λ

We need find two relationships between β and γ. One common
approach is to look at the step response of the system.

In particular, we can analyze the output of our system when the
input function x[n] = 1 for all n ≥ 0 and 0 otherwise.

We can calculate λ by measuring the time–denoted n∗–required for y[n]
to reach half of its steady-state y[∞],

λn
∗

= 0.5⇒ n∗ loge λ = loge 0.5⇒ λ = exp

(
1

n∗
loge 0.5

)
.
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Estimation of System Properties

Using the Steady-State Equation

Then, we can back-calculate for β:

β =
exp

(
1
n∗ loge 0.5

)
− 1

∆T
.

Next, we need to solve for γ. Let’s look at the steady state condition:

y[∞] ≈ y[∞](1 + ∆Tβ) + γ∆TKff .

Solving for γ, we find:

γ = −y[∞]β

Kff
= −

y[∞]
(
exp

(
1
n∗ loge 0.5

)
− 1
)

Kff∆T
.
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Estimation of System Properties

Check Yourself: Deriving β, γ for Unknown System

Consider the following plot of the step-response of a first-order system:
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Step Response of a First-Order System

Here, a feedforward controller is used with Kff = 1. Use the method
described to measure the system parameters γ and β.
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Estimation of System Properties

Check Yourself: Deriving β, γ for Unknown System
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Step Response of a First-Order System

From the plot, y[∞] = 0.5 and we measure n∗ = 3 time steps to reach
half of y[∞].

β =
exp

(
1
3 loge 0.5

)
− 1

∆T
= −4.1; γ = −0.5 ∗ (−4.1)

1
= 2.1.
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Python Tools for Analyzing First Order Systems

Numerical Tools for Analyzing Control Systems

First order systems are simple enough to solve manually. However, the
algebra becomes increasingly tedious for higher order systems.

Python has a control library which is useful for modeling systems. A
Google Colab notebook for the following code is available (here).
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https://colab.research.google.com/drive/1IvhjPe1mcSEnjFmqeYB9XFnLPMJG9MiB?usp=sharing


Python Tools for Analyzing First Order Systems

A (Condensed) Look at the Code..

# Define the system parameters

Kff = 1

beta = -4

gamma = 2

dt = 1/20

# Define the transfer function

num = np.array([0, dt*gamma*Kff])

den = np.array([1, -(1+dt*beta)])

# Define our first-order system

system = ctrl.TransferFunction(num,den,dt=dt)

# Get step response

time = np.arange(0, 1.5, dt) # Create the time vector

_, response = ctrl.step_response(system, T=time)
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Python Tools for Analyzing First Order Systems

Obtaining the Transfer Function

In the coming weeks, we’ll explain the transfer function. For now, let’s
see how we obtained it from “pattern matching”.

Rearranging our system function, we obtain:

y[n]− (1 + ∆Tβ)y[n− 1] = γ∆TKffx[n− 1].

The denominator contains the coefficients in front of y[n] and y[n− 1];
the numerator contains the coefficients in front of x[n] and x[n− 1]
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Python Tools for Analyzing First Order Systems

Modifying Code for Feedback Controller

# Define the system parameters

Kff = 1

Kp = 15

beta = -4

gamma = 2

dt = 1/20

# Define the transfer function

num = np.array([0, dt*gamma*Kff])

den = np.array([1, -(1+dt*beta) + dt*gamma*Kp])

# Define our first-order system

system = ctrl.TransferFunction(num,den,dt=dt)

# Set up timing variables

time = np.arange(0, 1.5, dt) # Create the time vector

# Get step response

_, response = ctrl.step_response(system, T=time)
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Python Tools for Analyzing First Order Systems

Simulating a First Order System with Feedback

Running the code, we obtain the following step response:

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

Re
sp

on
se

Step Response of a First-Order System
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Nominal and Perturbation Control Signals

Nominal and Perturbation Control Signals

Often time we control a system relative to an equilibrium state.
Consider modeling a quadrotor that is hovering at a set point.

There is a large nominal input command (some driving voltage) and a
large nominal altitude set point (height).

These nominal commands do not require feedback control.

We are interested in the “perturbation” control signals and sensor
output.

6.310 September 16, 2024 17 / 22



Nominal and Perturbation Control Signals

Visualizing Nominal vs. Perturbation Signals
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Nominal and Perturbation Control Signals

Block Diagrams with Nominal and Perturbation
Quantities

When we draw block diagrams, we need to specify which are the
nominal quantities and which are the perturbation quantities we
control:

Controller

Nominal Voltage
V0

Actuator/
Propellor

Sensor
h = H −H0V = V0 + v

desired height hd

Here, V is the perturbed voltage (nominal + perturbation); h is the
perturbed height.
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Complex Numbers and Natural Frequencies

Complex Number Definitions

Complex numbers are critical when analyzing higher order systems.
We will use j to denote the imaginary number, j =

√
−1.

Re

Im

0

z = a+ jb = reiφ

a

b

φ

r

r =
√
a2 + b2, φ = tan−1 (b/a) , a = r cosφ, b = r sinφ.
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Complex Numbers and Natural Frequencies

Complex Numbers and Analyzing Stability

Two important relations for j:

j2 = −1,
1

j
=

j

j2
= −j

We can use the polar form to evaluate the stability of our system:

λn = (rejφ)n = rnejnφ.

The phase ejnφ has an amplitude of 1, and the rn term determines
whether the system is stable. Importantly, the amplitude of natural
frequencies must always be less than 1.
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Complex Numbers and Natural Frequencies

Natural Frequencies on the Unit Circle
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