
6.3100: Dynamic System Modeling and Control Design

Tracking Errors and Disturbances

November 18, 2024

Review: State-Space Design

State-Space Model: gain K to locate the closed-loop poles of a state-space

model anywhere

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Matrices A, B, and C constitute a model of the plant (shaded).

We want to design the controller: K and Kr.

Last week we discussed two methods to design K:

• pole placement: choose K to achieve our choice of pole locations

• linear quadratic regulator: choose K to minimize a cost function

Pole Placement

The pole placement algorithm determines the gain K to locate the closed-

loop poles of a state-space model anywhere in the complex plane.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

The closed-loop poles of a state-space model are equal to the roots of its

characteristic polynomial:∣∣∣sI−(A−BK)
∣∣∣ = 0

which can be written as a product of first-order factors∣∣∣sI−(A−BK)
∣∣∣ =

n∏
i=1

(s−si) = 0

Given A and B, solve for the K that produces the desired pole locations.

Unfortunately, it’s not easy to figure out an “optimal” set of pole locations.

Linear Quadratic Regulator (LQR)

The LQR method minimizes a cost function J that describes the relative

cost (or badness) of inputs u(t) and responses x(t).

The cost function J is the time integral of a weighted sum of the squares

of state variables x(t) and input u(t)

J =
∫ ∞

0

(
xT(t)Qx(t) + uT(t)Ru(t)

)
dt

where u(t) and x(t) are related

• by the state transition equation: ẋ(t) = Ax(t) +Bu(t) and

• by the feedback constraint: u(t) = −Kx(t).

and Q and R represent weights.

The “optimal” K is given by

K = R−1BTS

where S is the symmetric n×n solution to the algebraic Riccati equation:

ATS+ SA− SBR−1BTS+Q = 0

Numerical Solutions

Fortunately there are efficient algorithms for solving both problems.

the following Python code

> from control import place_poles
> K = place_poles(A,B,[pole_1, pole_2, ... pole_n]).gain_matrix
or
> from control import lqr
> K,S,E = lqr(A,B,Q,R)

or MATLAB code

> K = place(A,B,[pole_1, pole_2, ... pole_n]);
or
> K,S,E = lqr(A,B,Q,R);

finds the optimal solutions to the place and LQR algorithms and returns

• K: state feedback gains,

• S: solution to the algebraic Riccati equation, and

• E: eigenvalues of the resulting closed-loop system.

Check Yourself

Use pole placement or LQR to find K.

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

How should we choose Kr?

1. Choose Kr to maximize stability.

2. Choose Kr to minimize steady-state error.

3. Choose Kr to minimize the time constant of the step response.

4. Choose Kr to minimize overshoot in y(t).

5. none of the above

Using Feedback to Reduce Tracking Errors

Using Kr to eliminate tracking errors is a feed-forward approach!

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

This method uses Kr to anticipate and pre-correct unwanted offsets in the

rest of the system.

Are there similar unwanted offsets in classical controllers?

Compare Classical and State-Space Controllers

State-Space Controller:

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

Classical Proportional Controller

+ Kp+ Kp
−

a0y(t) + a1ẏ(t) + · · ·
= b0u(t) + b1u̇(t) + · · ·yd(t) y(t)

e(t) u(t)

Check Yourself

Determine the steady-state error of the following system.

+ Kp+ Kp
−

a0y(t) + a1ẏ(t) + · · ·
= b0u(t) + b1u̇(t) + · · ·yd(t) y(t)

e(t) u(t)

Which of the following correctly describes the steady-state error?

1. e(∞) equals zero

2. e(∞) approaches zero with increasing Kp

3. e(∞) approaches zero with increasing Kp if b0 6= 0
4. feedback tends to reduce the steady-state error

5. none of the above

Tracking Errors

Tracking error refers to the difference between the output y(t) of a feedback

system and its desired value yd(t).

Tracking errors are especially important in some applications:

• automotive cruise control

• industrial robot (e.g., automotive assembly)

• landing a spacecraft on the moon

· · ·

Tracking errors can be eliminated by setting Kr as follows:

Kr = −1
C(A−BK)−1B

Unfortunately, tracking errors will still occur if the model parameters (A, B,

and C) do not accurately represent the physical plant (which is inevitable).

Using Feedback to Reduce Tracking Errors

Using Kr to eliminate tracking errors is a feed-forward approach!

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

This method uses Kr to anticipate and pre-correct unwanted offsets in the

rest of the system.

Fortunately, there is an alternative.

We can use feedback to dynamically reduce tracking errors.

Using Feedback to Reduce Tracking Errors

Approach: assign a state w(t) to accumulate the tracking error y(t)−yd(t).

w(t) =
∫ t

0

(
y(τ)−yd(τ)

)
dτ

Then use pole placement or LQR to design gains K to “optimally” reduce

this tracking error along with the other state variables to zero.

Incorporate w(t) into the state-space representation of the system.

Compute the derivative of w(t):

dw(t)
dt

= y(t)− yd(t) = Cx(t)− yd(t)

Note that if w(t) converges, then ẇ(t) → 0 and the steady-state output

error goes to zero.

Combine this equation with the original state equations:

ẋ(t) = Ax(t) +Bu(t) ; y(t) = Cx(t)
by defining a new augmented state vector:

x+(t) =
[
x(t)
w(t)

]

Using Feedback to Reduce Tracking Errors

Express both the original system equations and the tracking equation as a

single first-order matrix equation in the augmented state.[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸

B+

u(t) +
[

0
−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

The block diagram shows two entry points for yd(t). Do we need both?

+ +
∫

+ +
∫

Kr+

[
0
−1

]
B+ C+

A+

K+

+ +
∫

−
yd

yd

y
x+ẋ+

u

Using Feedback to Reduce Tracking Errors

Express both the original system equations and the tracking equation as a

first-order matrix equation in the augmented state.[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸

B+

u(t) +
[

0
−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

Retain only upper yd path; write augmented matrices as composites.

+ +

[
0
−1

]
[
B

0

] ∫
[C 0]

[
A 0

C 0

]
K+

−
0

yd

y

[
x

w

][
ẋ

ẇ

]
u

Using Feedback to Reduce Tracking Errors

Express both the original system equations and the tracking equation as a

first-order matrix equation in the augmented state.[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸

B+

u(t) +
[

0
−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

Check that the original homogeneous equations are correctly represented.

+ +
∫

[
0
−1

][
−1

]
[
B

0

][
0

]
[C 0][0]

[
A 0

C 0

][
C 0

]
K+

+ +
∫

−
0

yd

y

[
x

w

][
w

][
ẋ

ẇ

][
ẇ

]
u

Using Feedback to Reduce Tracking Errors

Express both the original system equations and the tracking equation as a

first-order matrix equation in the augmented state.[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸

B+

u(t) +
[

0
−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

Check that the integral equation is correctly represented.

+ +
∫

[
0
−1

][
0
]

[
B

0

][
B
]

[C 0][C]

[
A 0

C 0

][
A 0

]
K+

+ +
∫

−
0

yd

y

[
x

w

][
x
][

ẋ

ẇ

][
ẋ
]

u

Using Feedback to Reduce Tracking Errors

Express both the original system equations and the tracking equation as a

first-order matrix equation in the augmented state.[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸

B+

u(t) +
[

0
−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

Can we replace K+ with [K Kint]?

+ +

[
0
−1

]
[
B

0

] ∫
[C 0]

[
A 0

C 0

]
K+

−
0

yd

y

[
x

w

][
ẋ

ẇ

]
u

Check Yourself

Express the following system[
ẋ(t)
ẇ(t)

]
︸ ︷︷ ︸

ẋ+

=
[
A 0

C 0

]
︸ ︷︷ ︸

A+

[
x

w

]
︸ ︷︷ ︸

x+

+
[
B

0

]
︸ ︷︷ ︸
B+

u(t) +
[0

−1

]
yd(t) ; y(t) = [C 0]︸ ︷︷ ︸

C+

[
x

w

]
︸ ︷︷ ︸

x+

+ +

[
0
−1

]
[
B

0

] ∫
[C 0]

[
A 0

C 0

]
K+

−
0

yd

y

[
x

w

][
ẋ

ẇ

]
u

in the form

ẋ+(t) = Aclp x+(t) + Bclp yd(t)

Which (if any) of the following definitions are true?

1. Aclp = A+ − B+K+ 2. Aclp = A− BK 3. Bclp = [0, −1]T

4. Bclp = [B, 0]T 5. Bclp = BK

Disturbances

Disturbance d(t) adds to the value of ẋ(t) as shown below.

+ +Kr B

∫
C

A

K

F

+ +Kr B

∫
C

A

K

F

−

d(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

What’s the size of F? What do the entries in F represent?

Disturbances

Let H(s) represent the transfer function from Yd(s) to Y (s) when D(s) = 0.

Find a linear algebraic expression for H(s) in terms of the matrices below.

+ +Kr B

∫
C

A

K

F

+ +Kr B

∫
C

A

K

F

−

D(s)

Yd(s) Y (s)
X(s)sX(s)U(s)

Disturbances

Let G(s) represent the transfer function from D(s) to Y (s) when Yd(s) = 0.

Find a linear algebraic expression for G(s) in terms of the matrices below.

+ +Kr B

∫
C

A

K

F

+ +Kr B

∫
C

A

K

F

−

D(s)

Yd(s) Y (s)
X(s)sX(s)U(s)

Check Yourself

+ +Kr B

∫
C

A

K

F

+ +Kr B

∫
C

A

K

F

−

D(s)

Yd(s) Y (s)
X(s)sX(s)U(s)

H(s) = Y (s)
Yd(s) = C

(
sI−(A−BK)

)−1
BKr

G(s) = Y (s)
D(s) = C

(
sI−(A−BK)

)−1
F

Which statements are true if only the first component of F is nonzero?

1. G(s) represents a disturbance applied to ẋ1 and observed at y(t).
2. G(s) represents a disturbance applied to d and observed at x1(t).
3. Only x1(t) is affected by a disturbance d(t).
4. G(s) and H(s) have the same poles.

Next Time

Observer-based control.

