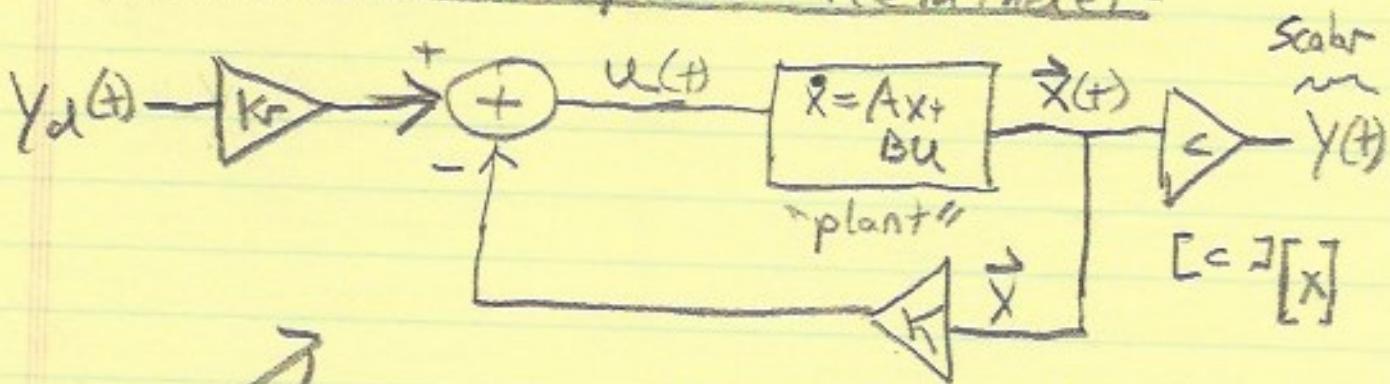


Today Observers in CT (D.T. after Holley)

CT State Space Reminder



$$Kx \leftarrow [K][x]$$

scalar

Diagram
Equation

$$\begin{cases} \dot{x} = Ax + Bu & u = k_r y_d - Kx \\ \dot{x} = (A - BK) \vec{x} + BK_r y \end{cases}$$

AND

$$y(t) = C \vec{x}(t)$$

state
output

Ex. States

Arm-angle

Arm Rot. Vel.,

Propellor Thrust

$y(t)$'s (that are also states)

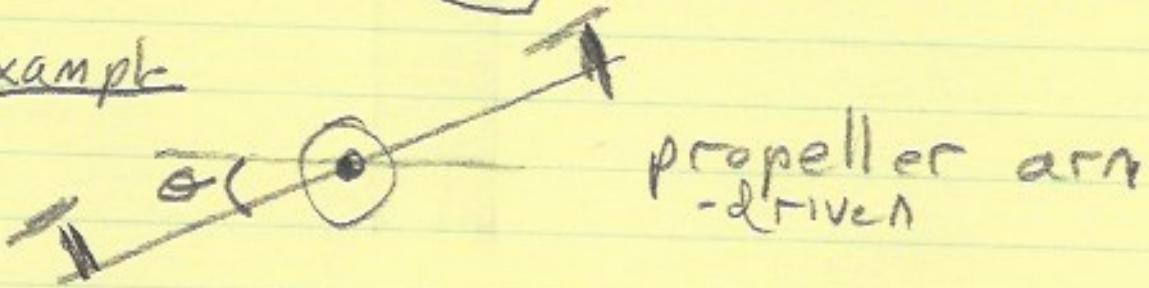
umbrella position

umbrella velocity,

Coil Current

What if x is not measurable (or some of x isn't)

Example



propeller arm
-driven

We can measure θ

We can approximate $\dot{\theta}$ $\dot{\theta} \approx \frac{\theta(t) - \theta(t-\Delta t)}{\Delta t}$

We can not measure:

Differential Propeller speed

Prop Speed
Proportional to
Thrust

Left speed prop - Right speed prop (proportional to Torque)

Estimating States from output using transfer function inverses
has noise issues (reminder on page 2A)

Instead, Set up an Estimator

original system: $\dot{x} = Ax + Bu$

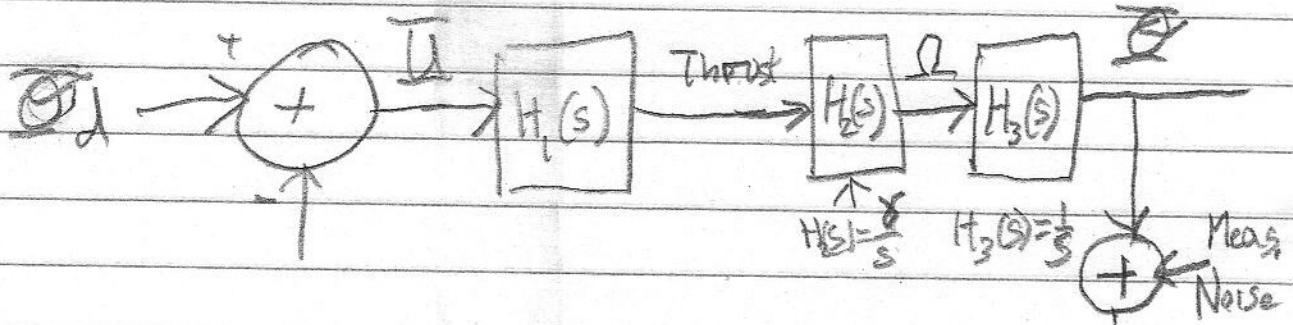
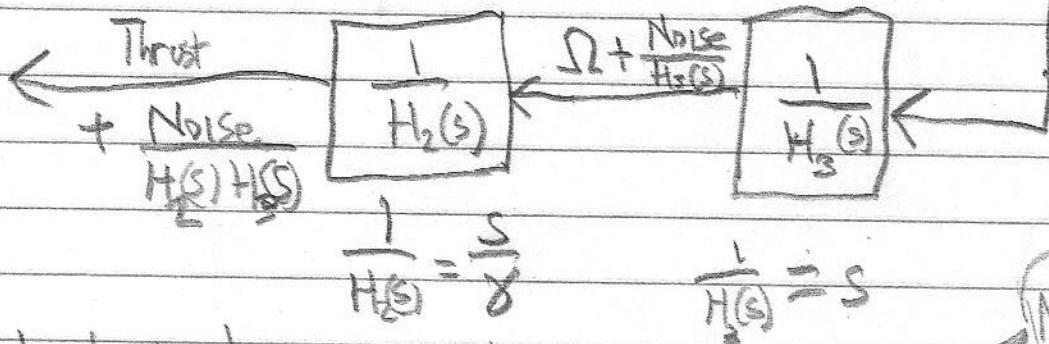
Estimation system
(computed using simulation)

$\dot{\hat{x}} = A\hat{x} + Bu$

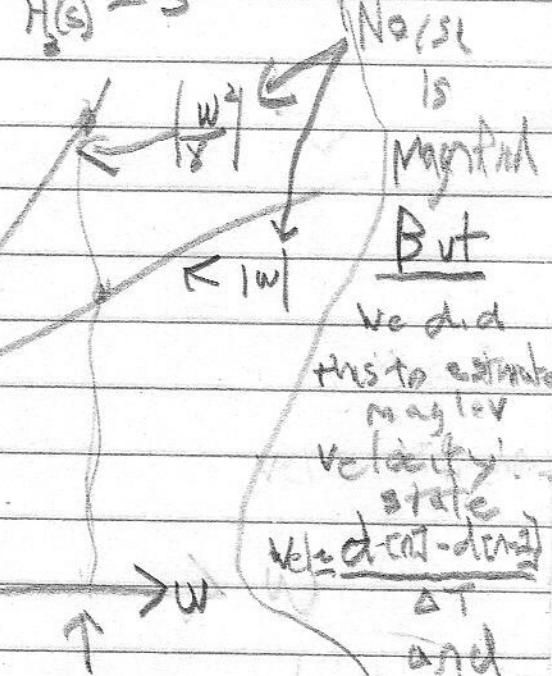
We generate u so we know it. Same for both systems

Getting states from output

Reminder of transfer function approach
using prop-arm example



$$|w| = \left| \frac{1}{H_2(jw)} \right| = \left| \frac{1}{H_1(jw) H_3(jw)} \right| = \left| \frac{w^2}{8} \right|$$



Thrust, Ω , O's are lower frequency

Noise is high frequency (Noisy)

Noise is magnitude
But
we did this to estimate
magnitude
velocity
state
velocity-const-density
AT
and
is

3

Use estimated (e.g. simulated) state for control

$$u(t) = \underbrace{K_r y_d(t)}_{\text{known}} - K \hat{x} \uparrow \text{estimated state}$$

"Obvious Problems"

1) is $x(t) \Big|_{t=0} = \hat{x}(t) \Big|_{t=0}$?

(Do initial cond's match)

2) Must simulate ^{estimation} system as part of control

Examine initial Condition Issue

Define $e_{rr}(t) = x(t) - \hat{x}(t)$

(1) $\frac{d}{dt} x(t) = Ax(t) + Bu(t)$

(2) $\frac{d}{dt} \hat{x}(t) = A \hat{x}(t) + Bu(t)$

Subtracting (2) from (1) (Assuming A, B ^{Angular} _{match} exactly)

$$\frac{d}{dt} (x(t) - \hat{x}(t)) = A (\underbrace{x(t) - \hat{x}(t)}_{e_{rr}(t)}) + Bu(t) - Bu(t)$$

$$\frac{d}{dt} e_{rr}(t) = A e_{rr}(t)$$

(4)

Recall $e^{At} \rightarrow 0$ if $\text{Re}(\text{eigenvals}(A)) < 0$
 \uparrow
not free

So

$$\text{If } \text{err}(t) \Big|_{t=0} = x(0) - \hat{x}(0) \neq 0$$

and $\text{real}(\text{eig}(A)) \leq 0$ strictly stable

then $\text{err}(t) \rightarrow 0$

So initial condition error decays for a strictly stable system!

"Less Obvious Problems"

- 1) Modeling Errors will cause mismatches
- 2) Physical system disturbances will not be in estimation (smallest)
so No disturbance rejection

Fix with Feedback

We always measure $y(t) = Cx(t)$
if single output system

then $y(t)$ is a scalar

but $x(t), \hat{x}(t)$ are vectors!

How do we use a scalar measurement to control $x(t)$?

Correct $\hat{x}(t)$ using $\hat{y}(t) = C\hat{x}(t)$

(5)

(1) Physical system $\dot{x} = Ax + Bu$

(2) Estimation system $\dot{\hat{x}} = A\hat{x} + Bu + [L](y - \hat{y})$

We know

$y = Cx$ $\hat{y} = C\hat{x}$

Recall estimation error

$$\text{err}(t) \equiv x(t) - \hat{x}(t)$$

(1) - (2)

$$\begin{aligned}\dot{\text{err}}(t) &= A\vec{\text{err}}(t) - L(Cx(t) - \hat{y}(t)) \\ &= A\vec{\text{err}}(t) - L(Cx(t) - C\hat{x}(t)) \\ &= A\vec{\text{err}}(t) - LC(\vec{\text{err}}(t)) \\ &= (A - LC)\vec{\text{err}}(t)\end{aligned}$$

Pick L so that $\vec{\text{err}}(t) \rightarrow \text{fast}$

Note

$\xrightarrow{\text{Transpose}}$

$$(A - BK) \quad (A - LC)$$

$$\begin{aligned}K &= \text{place}(A, B, \text{poles}) \\ K &= \text{lqr}(A, B, \text{weights})\end{aligned}$$

$$\begin{aligned}L &= \text{place}(A^T, C^T, \text{poles})^T \\ &= \text{lqr}(A^T, C^T, \text{weights})^T\end{aligned}$$

(6)

LQR $L = \text{lqr}(A^T, C^T, Q, R)^T?$

What's being minimized?

Pole Placement $L = \text{place}(A^T, C^T, \text{poles})^T$

$$\text{eig}(A - LC) = \text{eig}((A - LC)^T)$$

$$= \text{eig}(A^T - C^T L^T)$$

So place works the usual way

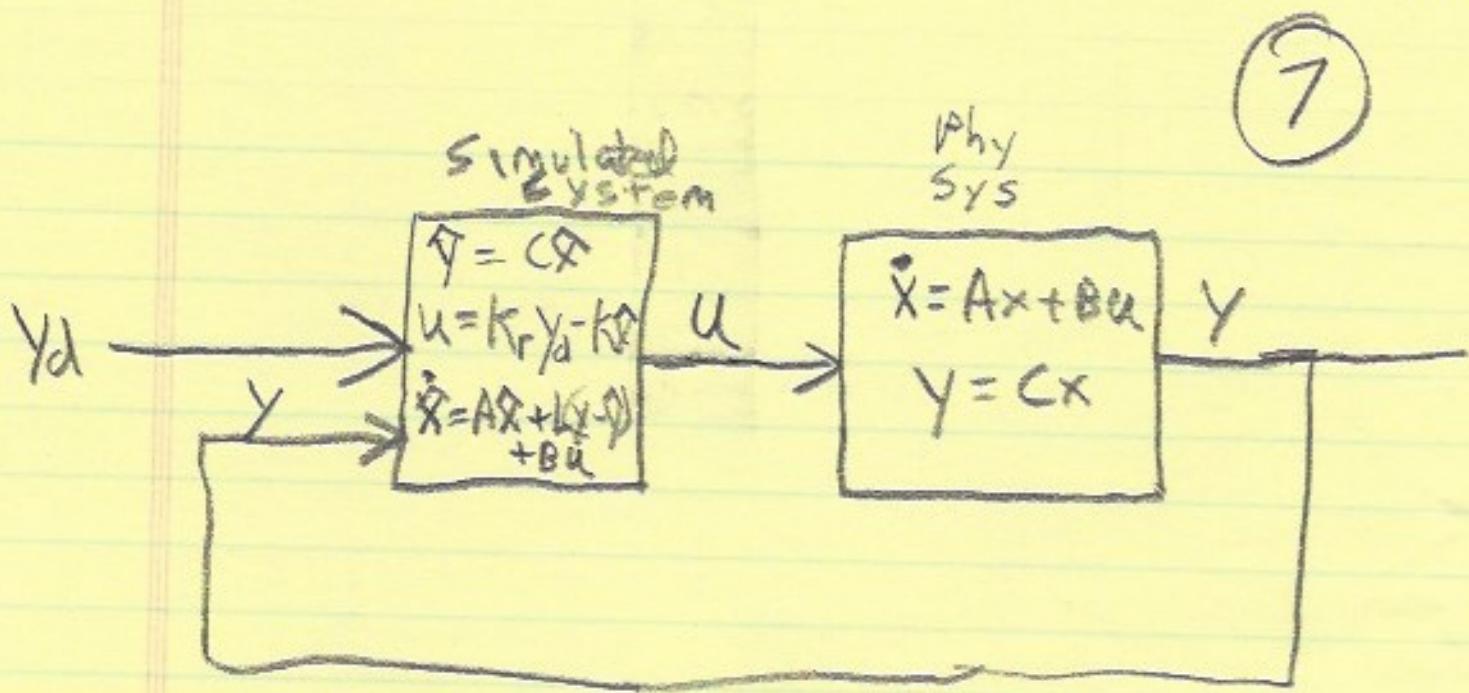
Estimator given L & K

$$u = K_r y_d - K \hat{x}$$

Est $\hat{x} = (A - BK)\hat{x} + K_r y_d + L(y - \hat{y})$

Phys $\hat{x} = (A - BK - LC)\hat{x} + K_r y_d + Ly$

Hmmm...



Analyzing

$$(1) \text{ Phys} \quad \dot{x} = Ax + Bu = Ax + B(Kr y_d - \hat{x})$$

$$(2) \text{ Est} \quad \dot{\hat{x}} = (Ax + Bu) + L(y - \hat{y}) = Ax + Bu + L(y - \hat{y})$$

$$e_{rr}(t) \equiv x(t) - \hat{x}(t)$$

$$\hat{x}(t) = x(t) - e_{rr}(t)$$

$$(1) - (2) \quad e_{rr}(t) = (A - LC) e_{rr}(t)$$

$$\dot{x} = Ax + BK_r y_d - BK \underbrace{(x(t) - e_{rr})}_{\hat{x}(t)}$$

$$= (A - BK)x + BK e_{rr}(t) + BK_r y_d$$

$$\begin{bmatrix} \dot{x} \\ e_{rr} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} x \\ e_{rr} \end{bmatrix} + \begin{bmatrix} BK_r \\ 0 \end{bmatrix} y_d$$

Decouples control from estimator!

(8)

• Recall Pol. Placement Tradeoff

Trade off

For a faster controller
pick K to make $\text{Re}(\text{eig}(A-BK))$ as negative as possible

To keep $|u|$ below hardware limits
pick K so that $|u| = |K_r y_d - K \bar{x}| < \text{hardware limit}$

• Trade off for the observer

Pick L so that $\text{Re}(\text{eig}(A-LC))$ is negative as possible

Because $\text{err}(t) = (A-LC)\text{err}(t)$

Ignoring measurement noise

$\text{err}(t) = e^{(A-LC)t} \text{err}(0)$

$\text{err}(t) \rightarrow 0$ fast if $\text{Re}(\text{eig}(A-LC)) < 0$

What limits L ?

Recall $\dot{x}(t) = Ax(t) + Bu$

$\dot{x}(t) = A\dot{x}(t) + Bu + L(y - \hat{y})$

$\dot{x}(t) - \dot{x}(t) = A(x(t) - \hat{x}(t)) - LC(x(t) - \hat{x}(t))$

$\text{err}(t) = -L \cdot \text{Noise}(t)$

Larger L magnifies noise, measured