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Recap of Last Lecture

Recap: Path Following Robot

Consider a line following example illustrated below:

d

ν

θ

d[n] = d[n− 1] + ∆Tνθ[n− 1],

θ[n] = θ[n− 1] + ∆T ω[n− 1]︸ ︷︷ ︸
we control

.

Goal: control the angular velocity (ω[n]) to follow the line.

Assume we have an optical sensor to measure the distance, d[n].
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Recap of Last Lecture

Recap: Matrix Form

We can model our system in matrix form.

Let’s try our proportional controller, ω[n] = Kp(dd[n]︸ ︷︷ ︸
=0

−d[n])

d

ν

θ [
d[n]
θ[n]

]
=

[
1 ν∆T

−Kp∆T 1

]
︸ ︷︷ ︸

A

[
d[n− 1]
θ[n− 1]

]

Is this a stable system? How can we tell?
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Recap of Last Lecture

Recap: Eigenvalues of A Determine Stability

[
d[n]
θ[n]

]
=

[
1 ν∆T

−Kp∆T 1

]
︸ ︷︷ ︸

A

[
d[n− 1]
θ[n− 1]

]

evals(A) = λ1, λ2 = 1± j∆T
√
Kpν

We can use an analogous result from our first order system:

If |λi| < 1, i = 1, 2, then our system is stable.

... which does not hold using proportional control.
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Recap of Last Lecture

Today’s Objectives

Can we find an equation for the response, d[n]?[
d[n]
θ[n]

]
=

[
1 ν∆T

−Kp∆T 1

]
︸ ︷︷ ︸

A

[
d[n− 1]
θ[n− 1]

]

evals(A) = λ1, λ2 = 1± j∆T
√
Kpν

Why are there complex eigenvalues in my “real” system??

We can use an analogous result from our first order system:

If |λi| < 1, i = 1, 2, then our system is stable.

... which does not hold using proportional control.

Can we find a better controller?
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Eigenvalues of 2 × 2 System Matrix

Recall the Definition of Eigenvalues and Eigenvectors

For a matrix A, λi, vi are an eigenvalue and eigenvector, resp., of A if

Avi = λivi

Suppose that we initialized with x[0] = c1v1. Then,

x[1] = Ax[0]

= Ac1v1

= c1λ1v1

x[2] = Ax[1]

= Ac1λ1v1

= c1λ
2
1v1

...

x[n] = c1λ
n
1v1.
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Eigenvalues of 2 × 2 System Matrix

Eigenvalues and Eigenvectors

For any vector, we can write it in terms of a linear combination of
v1, v2:

x[0] = c1v1 + c2v2

So, the general solution for x[n] is

x[n] = c1λ
n
1v1 + c2λ

n
2v2.

What if I only care about d[n], the first element of x[n]?

d[n] = c̃1λ
n
1 + c̃2λ

n
2 , c̃1 = c1v1[1], c̃2 = v2[1].

Key things to note:

Can solve for c̃1, c̃2 from initial conditions. Need d[0], d[1].

λ1, λ2 can either be (1) both real or (2) both complex.
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Natural Frequencies

Complex numbers and polar form

For a complex number z, we have that

z = a+ jb = |z|ej∠z = Mejφ

M =
√
a2 + b2

arcsin(φ) =
a

M

arccos(φ) =
b

M

−1 1

−1

1
z = a+ jb

a

b

M

φ <

=
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Natural Frequencies

Complex eigenvalues in conjugate pairs

Claim. If A ∈ Rn×n and λ ∈ C is an eigenvalue, then λ̄ is also an
eigenvalue.

Proof. If Av = λv with v 6= 0 and A real, then Av = λv ⇒ Av̄ = λ̄v̄.
So λ̄ is also an eigenvalue (with eigenvector v̄). �

Consequence: Nonreal eigenvalues of real matrices always occur in
conjugate pairs.
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Natural Frequencies

Coefficients of complex modes

General solution with a conjugate eigenvalue pair:

x[n] = c1 λ
n
1v1 + c2 λ

n
2v2.

If λ2 = λ̄1 and v2 = v̄1, then

x[n] = c1 λ
nv + c2 λ̄

nv̄.

For x[n] to remain real, the coefficients must also be conjugates:

c2 = c̄1.

So the contribution of a conjugate pair always has the form

c λnv + c̄ λ̄nv̄,

which is guaranteed to be real.
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Natural Frequencies

Conjugate pair contribution

Suppose a real system has a conjugate pair of eigenvalues:

λ1,2 = Me±jφ, 0 < M < 1.

With coefficients c and c̄:

x[n] = cMnejnφ + c̄Mne−jnφ.
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Natural Frequencies

Expanding with Euler’s identity

Euler’s identity: ejφ = cosφ+ j sinφ.

x[n] = cMn(cosnφ+ j sinnφ)

+ c̄Mn(cosnφ− j sinnφ).

Factor Mn and collect cosine and sine terms:

x[n] = Mn
[

(c+ c̄)︸ ︷︷ ︸
real

cos(nφ) + j(c− c̄)︸ ︷︷ ︸
real...?

sin(nφ)
]
.
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Natural Frequencies

Where does the j go?

Let c = α+ jβ with α, β ∈ R.

c+ c̄ = 2α (real), c− c̄ = 2jβ.

So
j(c− c̄) = j(2jβ) = −2β (real).
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Natural Frequencies

Final real sinusoidal form

Both coefficients are real, so the result is real:

x[n] = Mn
(
(2α) cos(nφ) + (−2β) sin(nφ)

)
.

x[n] = Mn
(
α′ cos(nφ) + β′ sin(nφ)

)
,

with real α′, β′ determined by the initial condition.
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Natural Frequencies

Another perspective: a phase–shifted cosine

Start from the decaying sinusoidal form

x[n] = Mn
(
α cos(nφ) + β sin(nφ)

)
, 0 < M < 1.

Define
R =

√
α2 + β2, δ = atan2(β, α).

Then, using cos(A−B) = cosA cosB + sinA sinB,

α cos(nφ) + β sin(nφ) = R cos
(
nφ− δ

)
,

so x[n] can be written as the phase–shifted cosine

x[n] = MnR cos
(
nφ− δ

)
M sets the decay per step,

φ sets the radians per sample (oscillation rate),

the phase parameter (δ) absorbs the initial mix of cosine/sine.
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New Controller!

Welcome Back Pathbot

Let’s revisit our path following robot:

d[n] = d[n− 1] + ∆T ν θ[n− 1],

θ[n] = θ[n− 1] + ∆T ω[n− 1],

Goal: make d[n]→ 0, θ[n]→ 0 by choosing angular velocity ω[n].

Suppose that we have access to θ[n]. We can penalize large θ[n]:

ω[n] = −Kp d[n] − Kθθ[n].
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New Controller!

Proportional-Angle Control?

Then our system equation becomes:

x[n] = Ax[n− 1], A =

[
1 ∆Tν

−∆TKθ 1−∆TKd

]
.

We can find the roots of det(λI −A) to determine the eigenvalues:

(λ− 1)(λ− (1−∆TKθ)) + ∆T 2νKp = 0

⇒ λ1, λ2 = 1− ∆TKθ

2
± ∆T

2

√
K2
θ − 4Kpν
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New Controller!

When will the system be stable?

With the following eigenvalues, when is the system stable?

⇒ λ1, λ2 = 1− ∆TKθ

2
± ∆T

2

√
K2
θ − 4Kpν

If K2
θ = 4Kpν, both eigenvalues are 1− ∆TKθ

2 .

If K2
θ < 4Kpν, we have complex-valued roots.

If K2
θ > 4Kpν, we have two distinct real eigenvalues.
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New Controller!

Takeaway: larger Kθ ⇒ larger safe Kp

For decaying oscillations (complex eigenvalues) with |λ| < 1 it suffices
to pick

K2
θ

4ν
< Kp <

Kθ

ν∆T
, Kθ <

4

∆T
.

Interpretation.

The upper bound on Kp grows linearly with Kθ: Kmax
p =

Kθ

ν∆T
.

The lower bound grows quadratically with Kθ: Kmin
p =

K2
θ

4ν
.

As long as Kθ < 4/∆T , there is a nonempty band of Kp values
yielding |λ| < 1 (stable, decaying oscillations).
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New Controller!

Example: Eigenvalues in the complex plane

Let ∆T = 0.05 s, ν = 0.5 m/s. Then
4/∆T = 80.

Choose Kθ = 10 (< 80).

Kp ∈
(

102

4·0.5 ,
10

0.5·0.05

)
= (50, 400).

Pick Kp = 100. Then

λ1,2 = 0.75± j 0.2236,

with magnitude |λ| ≈ 0.783 < 1.

−1 1

−1

1

λ1,2<

=
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New Controller!

Larger Kθ enlarges the admissible Kp range

Same parameters as before: ∆T = 0.05
s, ν = 0.5 m/s, 4/∆T = 80.

Now choose a larger angle gain:
Kθ = 20 (< 80).

Kp ∈
(

202

4 · 0.5
,

20

0.5 · 0.05

)
= (200, 800).

Pick Kp = 300 (inside the band). Then
the eigenvalues are

λ1,2 = 1− ∆TKθ

2
± j ∆T

2

√
4νKp −K2

θ

= 0.5± j 0.3536,

with magnitude
|λ| =

√
0.52 + 0.35362 ≈ 0.612 < 1.

−1 1

−1

1

λ1,2

<

=
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New Controller!

Eigenvalue locus as Kp varies (fixed Kθ)

As Kp increases from Kp,min to
Kp,max, the pair moves straight
up/down along <{λ} = 0.50012,
from = = 0 to = = ± 0.8658.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

<

=
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New Controller!

Eigenvalue locus as Kp varies (fixed Kθ)

For 0 < Kp < Kp,min: eigenvalues
are real, moving on the real axis.

For Kp,min < Kp < Kp,max:
eigenvalues are complex, forming
a vertical line at < = 0.50012.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

<

=
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New Controller!

Proportional Derivative (PD) control

What if we cannot measure θ[n]? Penalize the rate of change of d[n].

ω[n] = −Kp d[n] − Kd
d[n]− d[n− 1]

∆T
.

Note that this is a way to approximate the angle:

d[n]− d[n− 1]

∆T
≈ ν θ[n].

Thus, for analysis/intuition, PD on d[n] is approximately

ω[n] ≈ −Kp d[n] − (Kd ν)︸ ︷︷ ︸
:=Kθ

θ[n],
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New Controller!

PD on distance d[n] (exact discrete-time law)

ω[n] = −Kp d[n] − Kd
d[n]− d[n− 1]

∆T

Augment x[n] to carry d[n− 1]: let x[n] =

 d[n]
θ[n]

d[n− 1]

 . Then our

system is:

x[n] =

 1 ∆T ν 0

−(∆TKp +Kd) 1 Kd

1 0 0


︸ ︷︷ ︸

A

x[n− 1].
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New Controller!

Eigenvalues of A?

So, what are the eigenvalues of A for PD control? When are they less
than 1 in magnitude? 1 ∆T ν 0

−(∆TKp +Kd) 1 Kd

1 0 0


︸ ︷︷ ︸

A

Let’s use computational tools to analyze the eigenvalues and stability.
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