Dynamic System Modeling and Control Design Eigenvalues and Natural Frequencies

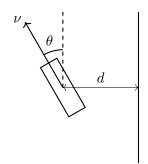
Sept. 17, 2025

Outline

- Recap of Last Lecture
- 2 Eigenvalues of 2×2 System Matrix
- Natural Frequencies
- 4 New Controller!

Recap: Path Following Robot

Consider a line following example illustrated below:



$$\begin{split} d[n] &= d[n-1] + \Delta T \nu \theta[n-1], \\ \theta[n] &= \theta[n-1] + \Delta T \underbrace{\omega[n-1]}_{\text{we control}}. \end{split}$$

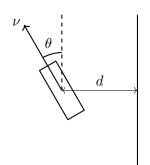
- Goal: control the angular velocity $(\omega[n])$ to follow the line.
- Assume we have an optical sensor to measure the distance, d[n].

6.310

Recap: Matrix Form

We can model our system in matrix form.

• Let's try our proportional controller, $\omega[n] = K_p(\underbrace{d_d[n]}_{=0} - d[n])$



$$\begin{bmatrix} d[n] \\ \theta[n] \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \nu \Delta T \\ -K_p \Delta T & 1 \end{bmatrix}}_{A} \begin{bmatrix} d[n-1] \\ \theta[n-1] \end{bmatrix}$$

• Is this a stable system? How can we tell?

Recap: Eigenvalues of A Determine Stability

$$\begin{bmatrix} d[n] \\ \theta[n] \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \nu \Delta T \\ -K_p \Delta T & 1 \end{bmatrix}}_{A} \begin{bmatrix} d[n-1] \\ \theta[n-1] \end{bmatrix}$$

$$\operatorname{evals}(A) = \lambda_1, \lambda_2 = 1 \pm j\Delta T \sqrt{K_p \nu}$$

- We can use an analogous result from our first order system:
 - If $|\lambda_i| < 1$, i = 1, 2, then our system is stable.
- ... which does not hold using proportional control. \odot

Sept. 17, 2025 5 / 27

Today's Objectives

Can we find an equation for the response, d[n]?

$$\begin{bmatrix} d[n] \\ \theta[n] \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & \nu \Delta T \\ -K_p \Delta T & 1 \end{bmatrix}}_{A} \begin{bmatrix} d[n-1] \\ \theta[n-1] \end{bmatrix}$$

$$evals(A) = \lambda_1, \lambda_2 = 1 \pm j\Delta T \sqrt{K_p \nu}$$

Why are there complex eigenvalues in my "real" system??

- We can use an analogous result from our first order system:
 - If $|\lambda_i| < 1$, i = 1, 2, then our system is stable.
- ... which does not hold using proportional control. ©
- Can we find a better controller?

Recall the Definition of Eigenvalues and Eigenvectors

For a matrix A, λ_i , v_i are an eigenvalue and eigenvector, resp., of A if

$$Av_i = \lambda_i v_i$$

Suppose that we initialized with $x[0] = c_1 v_1$. Then,

$$x[1] = Ax[0]$$

$$= Ac_1v_1$$

$$= c_1\lambda_1v_1$$

$$x[2] = Ax[1]$$

$$= Ac_1\lambda_1v_1$$

$$= c_1\lambda_1^2v_1$$

$$\vdots$$

$$x[n] = c_1\lambda_1^nv_1.$$

Eigenvalues and Eigenvectors

For **any** vector, we can write it in terms of a linear combination of v_1, v_2 :

$$x[0] = c_1 v_1 + c_2 v_2$$

So, the general solution for x[n] is

$$x[n] = c_1 \lambda_1^n v_1 + c_2 \lambda_2^n v_2.$$

What if I only care about d[n], the first element of x[n]?

$$d[n] = \tilde{c}_1 \lambda_1^n + \tilde{c}_2 \lambda_2^n, \ \tilde{c}_1 = c_1 v_1[1], \ \tilde{c}_2 = v_2[1].$$

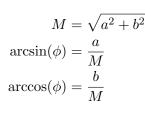
Key things to note:

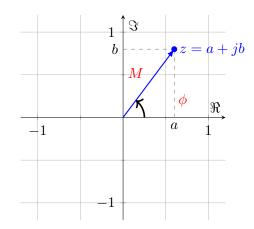
- Can solve for \tilde{c}_1, \tilde{c}_2 from initial conditions. Need d[0], d[1].
- λ_1, λ_2 can either be (1) both real or (2) both complex.

Complex numbers and polar form

For a complex number z, we have that

$$z = a + jb = |z|e^{j\angle z} = Me^{j\phi}$$





Complex eigenvalues in conjugate pairs

Claim. If $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{C}$ is an eigenvalue, then λ is also an eigenvalue.

Proof. If $Av = \lambda v$ with $v \neq 0$ and A real, then $\overline{Av} = \overline{\lambda v} \Rightarrow A\overline{v} = \overline{\lambda}\overline{v}$. So $\overline{\lambda}$ is also an eigenvalue (with eigenvector \overline{v}).

Consequence: Nonreal eigenvalues of real matrices always occur in conjugate pairs.

Coefficients of complex modes

• General solution with a conjugate eigenvalue pair:

$$x[n] = c_1 \lambda_1^n v_1 + c_2 \lambda_2^n v_2.$$

• If $\lambda_2 = \bar{\lambda}_1$ and $v_2 = \bar{v}_1$, then

$$x[n] = c_1 \lambda^n v + c_2 \bar{\lambda}^n \bar{v}.$$

• For x[n] to remain real, the coefficients must also be conjugates:

$$c_2=\bar{c}_1.$$

• So the contribution of a conjugate pair always has the form

$$c \lambda^n v + \bar{c} \bar{\lambda}^n \bar{v},$$

which is guaranteed to be real.

Conjugate pair contribution

Suppose a real system has a conjugate pair of eigenvalues:

$$\lambda_{1,2} = M e^{\pm j\phi}, \qquad 0 < M < 1.$$

With coefficients c and \bar{c} :

$$x[n] = c M^n e^{jn\phi} + \bar{c} M^n e^{-jn\phi}.$$

Expanding with Euler's identity

Euler's identity: $e^{j\phi} = \cos \phi + j \sin \phi$.

$$x[n] = c M^{n}(\cos n\phi + j\sin n\phi) + \bar{c} M^{n}(\cos n\phi - j\sin n\phi).$$

Factor M^n and collect cosine and sine terms:

$$x[n] = M^n \left[\underbrace{(c + \bar{c})}_{\text{real}} \cos(n\phi) + \underbrace{j(c - \bar{c})}_{\text{real}} \sin(n\phi) \right].$$

Where does the j go?

Let
$$c = \alpha + j\beta$$
 with $\alpha, \beta \in \mathbb{R}$.

$$c + \bar{c} = 2\alpha$$
 (real), $c - \bar{c} = 2j\beta$.

So

$$j(c-\bar{c}) = j(2j\beta) = -2\beta$$
 (real).

Final real sinusoidal form

Both coefficients are real, so the result is real:

$$x[n] = M^n((2\alpha)\cos(n\phi) + (-2\beta)\sin(n\phi)).$$

$$x[n] = M^{n} (\alpha' \cos(n\phi) + \beta' \sin(n\phi)),$$

with real α', β' determined by the initial condition.

Another perspective: a phase-shifted cosine

Start from the decaying sinusoidal form

$$x[n] = M^n (\alpha \cos(n\phi) + \beta \sin(n\phi)), \qquad 0 < M < 1.$$

Define

$$R = \sqrt{\alpha^2 + \beta^2}, \quad \delta = \operatorname{atan2}(\beta, \alpha).$$

Then, using $\cos(A - B) = \cos A \cos B + \sin A \sin B$,

$$\alpha \cos(n\phi) + \beta \sin(n\phi) = R \cos(n\phi - \delta),$$

so x[n] can be written as the phase-shifted cosine

$$x[n] = M^n R \cos(n\phi - \delta)$$

- M sets the decay per step,
- ϕ sets the radians per sample (oscillation rate),
- the phase parameter (δ) absorbs the initial mix of cosine/sine.

Welcome Back Pathbot

Let's revisit our path following robot:

$$d[n] = d[n-1] + \Delta T \nu \theta[n-1],$$

$$\theta[n] = \theta[n-1] + \Delta T \omega[n-1],$$

Goal: make $d[n] \to 0$, $\theta[n] \to 0$ by choosing angular velocity $\omega[n]$.

Suppose that we have access to $\theta[n]$. We can penalize large $\theta[n]$:

$$\omega[n] = -K_p d[n] - K_\theta \theta[n].$$

Proportional-Angle Control?

Then our system equation becomes:

$$x[n] = A x[n-1], \qquad A = \begin{bmatrix} 1 & \Delta T \nu \\ -\Delta T K_{\theta} & 1 - \Delta T K_{d} \end{bmatrix}.$$

We can find the roots of $det(\lambda I - A)$ to determine the eigenvalues:

$$(\lambda - 1)(\lambda - (1 - \Delta T K_{\theta})) + \Delta T^{2} \nu K_{p} = 0$$

$$\Rightarrow \lambda_{1}, \lambda_{2} = 1 - \frac{\Delta T K_{\theta}}{2} \pm \frac{\Delta T}{2} \sqrt{K_{\theta}^{2} - 4K_{p}\nu}$$

When will the system be stable?

With the following eigenvalues, when is the system stable?

$$\Rightarrow \lambda_1, \lambda_2 = 1 - \frac{\Delta T K_{\theta}}{2} \pm \frac{\Delta T}{2} \sqrt{K_{\theta}^2 - 4K_p \nu}$$

- If $K_{\theta}^2 = 4K_p\nu$, both eigenvalues are $1 \frac{\Delta T K_{\theta}}{2}$.
- If $K_{\theta}^2 < 4K_p\nu$, we have complex-valued roots.
- If $K_{\theta}^2 > 4K_p\nu$, we have two distinct real eigenvalues.

Takeaway: larger $K_{\theta} \Rightarrow$ larger safe K_{p}

For decaying oscillations (complex eigenvalues) with $|\lambda| < 1$ it suffices to pick

$$\frac{K_{\theta}^2}{4\nu} < K_p < \frac{K_{\theta}}{\nu \Delta T} , \qquad K_{\theta} < \frac{4}{\Delta T} .$$

Interpretation.

- The upper bound on K_p grows linearly with K_{θ} : $K_p^{\max} = \frac{K_{\theta}}{\nu \Delta T}$.
- The lower bound grows quadratically with K_{θ} : $K_{p}^{\min} = \frac{K_{\theta}^{2}}{4\nu}$.
- As long as $K_{\theta} < 4/\Delta T$, there is a nonempty band of K_p values yielding $|\lambda| < 1$ (stable, decaying oscillations).

Example: Eigenvalues in the complex plane

Let
$$\Delta T = 0.05 \text{ s}, \ \nu = 0.5 \text{ m/s}.$$
 Then $4/\Delta T = 80.$

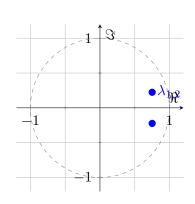
Choose
$$K_{\theta} = 10 \ (< 80)$$
.

$$K_p \in \left(\frac{10^2}{4 \cdot 0.5}, \frac{10}{0.5 \cdot 0.05}\right) = (50, 400).$$

Pick
$$K_p = 100$$
. Then

$$\lambda_{1,2} = 0.75 \pm j \, 0.2236,$$

with magnitude $|\lambda| \approx 0.783 < 1$.



Larger K_{θ} enlarges the admissible K_{p} range

Same parameters as before: $\Delta T = 0.05$

s,
$$\nu = 0.5 \text{ m/s}, 4/\Delta T = 80.$$

Now choose a **larger** angle gain:

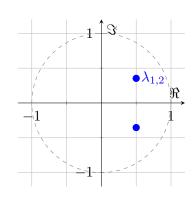
$$K_{\theta} = 20 \ (< 80).$$

$$K_p \in \left(\frac{20^2}{4 \cdot 0.5}, \frac{20}{0.5 \cdot 0.05}\right) = (200, 800).$$

Pick $K_p = 300$ (inside the band). Then the eigenvalues are

$$\lambda_{1,2} = 1 - \frac{\Delta T K_{\theta}}{2} \pm j \frac{\Delta T}{2} \sqrt{4\nu K_p - K_{\theta}^2}$$

= 0.5 \pm j 0.3536,

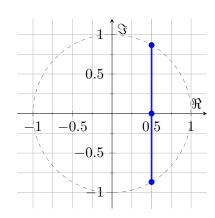


with magnitude

$$|\lambda| = \sqrt{0.5^2 + 0.3536^2} \approx 0.612 < 1.$$

Eigenvalue locus as K_p varies (fixed K_{θ})

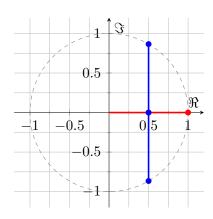
As K_p increases from $K_{p,\text{min}}$ to $K_{p,\text{max}}$, the pair moves straight up/down along $\Re\{\lambda\} = 0.50012$, from $\Im = 0$ to $\Im = \pm 0.8658$.



Eigenvalue locus as K_p varies (fixed K_{θ})

For $0 < K_p < K_{p,\min}$: eigenvalues are real, moving on the real axis.

For $K_{p,\min} < K_p < K_{p,\max}$: eigenvalues are complex, forming a vertical line at $\Re = 0.50012$.



Proportional Derivative (PD) control

What if we cannot measure $\theta[n]$? Penalize the rate of change of d[n].

$$\omega[n] = -K_p d[n] - K_d \frac{d[n] - d[n-1]}{\Delta T}.$$

Note that this is a way to approximate the angle:

$$\frac{d[n] - d[n-1]}{\Delta T} \approx \nu \theta[n].$$

Thus, for analysis/intuition, PD on d[n] is approximately

$$\omega[n] \; \approx \; -K_p \, d[n] \; - \; \underbrace{\left(K_d \, \nu\right)}_{:=K_\theta} \, \theta[n],$$

PD on distance d[n] (exact discrete-time law)

$$\omega[n] = -K_p d[n] - K_d \frac{d[n] - d[n-1]}{\Delta T}$$

Augment x[n] to carry d[n-1]: let $x[n]=\begin{bmatrix}d[n]\\\theta[n]\\d[n-1]\end{bmatrix}$. Then our system is:

$$x[n] \; = \; \underbrace{\begin{bmatrix} 1 & \Delta T \, \nu & 0 \\ -(\Delta T K_p + K_d) & 1 & K_d \\ 1 & 0 & 0 \end{bmatrix}}_{\mathbf{x}[n-1].$$

Eigenvalues of A?

So, what are the eigenvalues of A for PD control? When are they less than 1 in magnitude?

$$\begin{bmatrix}
1 & \Delta T \nu & 0 \\
-(\Delta T K_p + K_d) & 1 & K_d \\
1 & 0 & 0
\end{bmatrix}$$

Let's use computational tools to analyze the eigenvalues and stability.