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Recap of Last Lecture

Recap: Path Following Robot

Consider a line following example illustrated below:

0
I d dln] =d[n — 1] + ATv0n — 1],
0[n] =0[n — 1] + AT w[n —1].
——

we control

e Goal: control the angular velocity (w[n]) to follow the line.

e Assume we have an optical sensor to measure the distance, d[n].
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Recap of Last Lecture

Recap: Matrix Form

We can model our system in matrix form.

e Let’s try our proportional controller, win| = K,(dq[n| —d[n])

g
v ; E
Bl L
A

o Is this a stable system? How can we tell?
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Recap of Last Lecture

Recap: Eigenvalues of A Determine Stability

evals(A) = A\, Ao = 1 £ jJAT\/Kpv

@ We can use an analogous result from our first order system:
o If |\;| <1, i =1,2, then our system is stable.

@ ... which does not hold using proportional control. ®
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Recap of Last Lecture

Today’s Objectives

Can we find an equation for the response, d[n]?

ol = Lar ][]

A

evals(A) = A, Ay = 1 £ jJAT\/Kp,v

Why are there complex eigenvalues in my “real” system??

@ We can use an analogous result from our first order system:
o If |N;| <1, i =1,2, then our system is stable.

@ ... which does not hold using proportional control. @

e Can we find a better controller?
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Eigenvalues of 2 X 2 System Matrix

Recall the Definition of Eigenvalues and Eigenvectors

For a matrix A, \;,v; are an eigenvalue and eigenvector, resp., of A if
Avi = )\ivi
Suppose that we initialized with z[0] = cjv;1. Then,
z[1] = Az[0]
= Aclvl
= C1 /\11)1
z[2] = Az[l]
= Aq /\11]1

= clkfvl

z[n] = e1 AT
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Eigenvalues of 2 X 2 System Matrix

Figenvalues and Eigenvectors

For any vector, we can write it in terms of a linear combination of
V1, V2!

z[0] = c1v1 4 covg
So, the general solution for z[n] is
z[n] = c1ATv1 + caAJva.
What if I only care about d[n], the first element of z[n]?
dn] = 1 AT + é\5, €1 = civi[l], é = vall].
Key things to note:

e Can solve for ¢1, ¢ from initial conditions. Need d[0], d[1]
@ A1, A2 can either be (1) both real or (2) both complex.
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Natural Frequencies

Complex numbers and polar form

For a complex number z, we have that

z=a+jb= ]z]ejéz = Mei?

118
br----1 z=a+jb
M !
M = +/a? + b? :(/)
. a | l R
arcsin(¢) = i i a1
b
arccos(¢) = i
—1+
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Natural Frequencies

Complex eigenvalues in conjugate pairs

Claim. If A € R"*" and )\ € C is an eigenvalue, then \ is also an
eigenvalue.

Proof. If Av = Av with v # 0 and A real, then Av =v = Av = \v.
So A is also an eigenvalue (with eigenvector v). U

Consequence: Nonreal eigenvalues of real matrices always occur in
conjugate pairs.
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Natural Frequencies

Coefficients of complex modes

@ General solution with a conjugate eigenvalue pair:
z[n] = c1 Afvr + c2 Ajus.
o If \y = \; and vy = 71, then
z[n] = c1 N + 2 A"
e For z[n] to remain real, the coefficients must also be conjugates:
Co = Cj1.
@ So the contribution of a conjugate pair always has the form
cA" + EA"D,
which is guaranteed to be real.
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Natural Frequencies

Conjugate pair contribution

Suppose a real system has a conjugate pair of eigenvalues:
)\1,2:M€ij¢, 0< M < 1.
With coefficients ¢ and ¢:

z[n] = c M + e MmeI?,
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Natural Frequencies

Expanding with Euler’s identity

Euler’s identity: /% = cos ¢ + j sin ¢.

z[n] = ¢ M"(cosng + jsinng)
+ cM"(cosng — jsinng).

Factor M™ and collect cosine and sine terms:

x[n] = M" [ (c+¢)cos(ng) + j(c—c)sin(ng)|.

real real...?
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Natural Frequencies

Where does the j go?

Let c=a+ j8 with o, 5 € R.
c+c=2a (real), c—c¢=2j0.

So
jle—1¢)=j(2jB8) = =28 (real).
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Natural Frequencies

Final real sinusoidal form

Both coefficients are real, so the result is real:

z[n] = M"™((20) cos(ng) + (—28)sin(ng)).

z[n] = M™(a cos(ng) + B’ sin(ng)),

with real o/, 8’ determined by the initial condition.
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Natural Frequencies

Another perspective: a phase-shifted cosine

Start from the decaying sinusoidal form

z[n] = M"(acos(ng) + Bsin(ng)), 0<M<1.

Define
R = a2+ 32, § = atan2(8,a).

Then, using cos(A — B) = cos A cos B + sin Asin B,
acos(ng) + Bsin(ng) = Rcos(ng — §),

so z[n] can be written as the phase—shifted cosine

z[n] = M"™R cos(n¢ — )

o M sets the decay per step,
@ ¢ sets the radians per sample (oscillation rate),
e the phase parameter () absorbs the initial mix of cosine/sine.
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New Controller!

Welcome Back Pathbot

Let’s revisit our path following robot:

dln] =dn -1+ ATv0[n — 1],
On — 1]+ AT win — 1],

=
=,
|

Goal: make d[n] — 0, 6[n] — 0 by choosing angular velocity wn].

Suppose that we have access to §[n]. We can penalize large 0[n|:

wln| = —K,d[n] — Kpb[n].
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New Controller!

Proportional-Angle Control?

Then our system equation becomes:

1 ATv

— Aaln—1 A=
2l = Awln 1], _ATK, 1—ATK,

We can find the roots of det(AI — A) to determine the eigenvalues:

(A —1)(A— (1 — ATKy)) + AT*vK, =0

ATKy AT
b+ =\ /K2 —4K,v
2 2

=AM, Ay =1—
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New Controller!

When will the system be stable?

With the following eigenvalues, when is the system stable?

ATKy AT
=M =1-— GiT K2 — 4K,
o If Kg = 4K v, both eigenvalues are 1 — AJ;K".

o If K? < 4K ,v, we have complex-valued roots.
0 P

o If K 92 > 4K,v, we have two distinct real eigenvalues.
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New Controller!

Takeaway: larger Ky = larger safe K

For decaying oscillations (complex eigenvalues) with |A| < 1 it suffices
to pick

K} Ky 4
K — K
w S S AT ¢ < AT
Interpretation.
Ky
Th bound on K, li ly with Ky: K = :
e The upper bound on K, grows linearly wi ) » AT
K2
e The lower bound grows quadratically with Kg: K;"" = 4—9.
v

e Aslong as Ky < 4/AT, there is a nonempty band of K, values
yielding |A| < 1 (stable, decaying oscillations).
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New Controller!

Example: Eigenvalues in the complex plane

Let AT =0.05s, v = 0.5 m/s. Then
4/AT = 80.

Choose Ky =10 (< 80).
2
Ky € (% ﬁ(‘}%) = (50, 400).
Pick K, = 100. Then
A12 = 0.75 £ 5 0.2236,

with magnitude |A| ~ 0.783 < 1.
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New Controller!

Larger Ky enlarges the admissible K, range

Same parameters as before: AT = 0.05
s, v=0.5m/s, 4/AT = 80.

Now choose a larger angle gain:
Ky =20 (< 80).

202 20
K, € ( > = (200, 800).

4-0.5" 0.5-0.05

Pick K, =300 (inside the band). Then
the eigenvalues are

ATEK; | AT
Mo=1- 291]7f WK, — K2
= 0.5+ j 0.3536,

with magnitude

I\l = v0.52 + 0.35362 ~ 0.612 < 1.
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New Controller!

Eigenvalue locus as K, varies (fixed Kjy)

1S
AT e
- 0.5
As K, increases from K, ynin to / )
K max, the pair moves straight 1/ | "8%
up/down along R{A} = 0.50012, 1 —05 ols 1
from &= 0 to & = = 0.8658. " )
+ —0.5 | +
AR ¢ a
gl
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New Controller!

Eigenvalue locus as K, varies (fixed Kjy)

1S
AT e
For 0 < K, < Kp, min: eigenvalues // 0.5
are real, moving on the real axis. X \\§R
Eor Kpmin < Kp < Kp max: . —i\l _6.5 ol ;
eigenvalues are complex, forming g i
a vertical line at it = 0.50012. =051 -
- : =
=3 ="
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New Controller!

Proportional Derivative (PD) control

What if we cannot measure 6[n]? Penalize the rate of change of d[n].

d[n] —dn — 1]

wln] = —Kpdn] — Ky AT

Note that this is a way to approximate the angle:

d[n] —dn — 1]

AT ~ v0n].

Thus, for analysis/intuition, PD on d[n] is approximately

win] =~ —K,d[n] — (Kqv) 0[n],
=Ky
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New Controller!

PD on distance d[n] (exact discrete-time law)

dn| —dn—-1
win] = —K,dn] — Ky ] AZL ]
d[n]
Augment z[n| to carry d[n — 1]: let z[n] = | 6[n] | . Then our
dln — 1]
system is:
1 ATv 0
zln] = |—(ATK,+Ky) 1 K4| z[n—1].
1 0 0
A
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New Controller!

Eigenvalues of A?

So, what are the eigenvalues of A for PD control? When are they less
than 1 in magnitude?

1 ATv 0
—(ATKP + Ky) 1 Ky
1 0 0

A

Let’s use computational tools to analyze the eigenvalues and stability.
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