Dynamic System Modeling and Control Design Frequency Response

Review: s-Domain Description

• We describe an LTI system by

$$Y = H(s) U,$$
 $H(s) = \frac{n(s)}{d(s)},$

where H(s) is a rational function of polynomials,

$$n(s) = b_{\hat{\ell}} s^{\hat{\ell}} + \ldots + b_1 s + b_0, \qquad d(s) = a_{\ell} s^{\ell} + \ldots + a_1 s + a_0,$$

• using the heuristic rule

$$\frac{d}{dt} \longleftrightarrow s.$$

Turns a differential equation into algebra in the variable s.

6.310

Natural Frequencies of Our System

In general,

$$(a_{\ell}s^{\ell} + \ldots + a_{1}s + a_{0})Y = (b_{\ell}s^{\ell} + \ldots + b_{1}s + b_{0})U.$$

Suppose $u(t) = 0 \ \forall t \Rightarrow U = 0 \ \text{and} \ y(t) = \sum_i \alpha_i e^{\lambda_i t}$.

Then for each term,

$$a_{\ell}s^{\ell}Y \longleftrightarrow a_{\ell}\frac{d^{\ell}}{dt^{\ell}}y(t), \qquad \frac{d^{\ell}}{dt^{\ell}}y(t) = \sum_{i} \lambda_{i}^{\ell}\alpha_{i}e^{\lambda_{i}t}.$$

 $\alpha_i \neq 0$ iff λ_i is a root of $d(s)|_{s=\lambda_i} = 0$

• The roots of d(s) are called the "natural frequencies."

6.310

Motivation: Why (Complex) Exponential Inputs?

We will choose an input function of the form: $u(t) = \sum_i \beta_i e^{s_i t}$.

- Many signals in engineering are oscillatory: vibrations, AC power, rotating machinery, etc.
- Because the system is linear and time-invariant; knowing the response to one sinusoid tells us how the system behaves for any sum of sinusoids.

Idea: We can probe our system with exponentials of our choosing, e^{s_0t} , and analyze how the system output responds.

0 Oct. 8, 2025

Decomposing the System Response

• For any input,

$$y(t) = \sum_{i} \alpha_i e^{\lambda_i t}$$
 + (response due to an input).

- If the natural frequencies λ_i have negative real parts, the natural response **decays**.
- Today's objective: understand the response due to a **sinusoidal input**.

10 Oct. 8, 2025

Complex Exponential In, Complex Exponential Out

Recall our setup:

$$(a_{\ell}s^{\ell} + a_{\ell-1}s^{\ell-1} + \dots + a_1s + a_0)Y = (b_{\hat{\ell}}s^{\hat{\ell}} + \dots + b_1s + b_0)U,$$

or equivalently,

$$d(s)Y = n(s)U.$$

We want to see how the system responds to an **exponential input:**

$$u(t) = e^{s_0 t}.$$

Because $s \leftrightarrow \frac{d}{dt}$,

$$s^k U \iff \frac{d^k}{dt^k} e^{s_0 t} = s_0^k e^{s_0 t}.$$

Try a particular solution: assume $y(t) = Ce^{s_0t}$, where C is a complex constant to be found.

6.310

Complex Exponential In, Complex Exponential Out

Substitute $y(t) = Ce^{s_0t} \longleftrightarrow Y$ and $u(t) = e^{s_0t} \longleftrightarrow U$ into

$$|d(s)|_{s=s_0} Y = |n(s)|_{s=s_0} U.$$

Then:

$$d(s_0) C e^{s_0 t} = n(s_0) e^{s_0 t}.$$

If $d(s_0) \neq 0$, we can cancel $e^{s_0 t}$ to obtain

$$C = \frac{n(s_0)}{d(s_0)}, \Rightarrow y(t) = \frac{n(s_0)}{d(s_0)} e^{s_0 t}$$

6.310

Special case: Complex exponential input.

If $d(s_0) \neq 0$, we can cancel $e^{s_0 t}$ to obtain

$$C = \frac{n(s_0)}{d(s_0)}, \Rightarrow y(t) = \frac{n(s_0)}{d(s_0)} e^{s_0 t}.$$

Let $s_0 = j\omega$:

$$H(j\omega) \equiv \frac{n(j\omega)}{d(j\omega)}, \qquad y(t) = H(j\omega)e^{j\omega t}.$$

- Recall Euler's identity: $e^{j\theta} = \cos \theta + j \sin \theta$
- The complex exponential $e^{j\omega t}$ NEVER decays to zero.

6.310

Transient and Steady-State Responses

• For a persisting sinusoidal input,

$$y(t) = \sum_{i} \alpha_i e^{\lambda_i t} + (\text{sinusoidal steady state response}).$$

- If the natural frequencies λ_i have negative real parts, the natural response **decays**.
 - Dies out with time; referred to as the **transient** response.
- We have the tools necessary to determine the **sinusoidal steady state** response.

6.310 Oct. 8, 2025

Sinusoidal Steady State

Suppose our input takes the form $u(t) = \cos \omega t$. What is y(t)?

Euler's identity:
$$u(t) = \frac{1}{2} \left(e^{j\omega t} + e^{-j\omega t} \right)$$

• Through superposition, we know that,

$$y(t) = \frac{1}{2} \left(H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t} \right),$$

$$= \Re \left\{ H(j\omega)e^{j\omega t} \right\},$$

$$= \Re \left\{ |H(j\omega)|e^{j(\omega t + 2H(j\omega))} \right\},$$

$$= |H(j\omega)|\cos(\omega t + 2H(j\omega)),$$

• Compared with u(t), output y(t)'s magnitude scales by $|H(j\omega)|$ and its phase changes by $\angle H(j\omega)$.

6.310 Oct. 8, 2025 10 / 16

Defining the Frequency Response

• The **frequency response** of a continuous-time LTI system is

$$H(j\omega) \equiv H(s)\big|_{s=j\omega}.$$

- $H(j\omega) = |H(j\omega)|e^{j\angle H(j\omega)}$ is complex.
- $|H(j\omega)|$: amplitude ratio (gain) $\angle H(j\omega)$: phase shift.
- Together, they describe the steady-state output for any sinusoidal input.

6.310 Oct. 8, 2025

Interpreting the Frequency Response

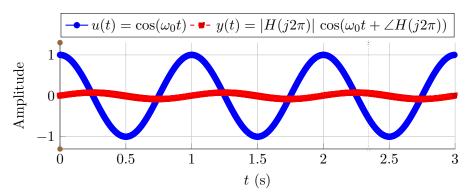
- $|H(j\omega)|$: how much the system amplifies or attenuates each input frequency.
- The shape of $|H(j\omega)|$ reveals which input frequencies excite the system strongly (those near its natural frequencies).
- $\angle H(j\omega)$: how much the system shifts each frequency in time.
- The frequency response is therefore the bridge between the system's natural dynamics and its steady-state behavior under sinusoidal forcing.

0 Oct. 8, 2025

Example: $H(s) = \frac{1}{1+2s}$ for single input

Suppose
$$H(s) = \frac{1}{1+2s}$$
. We input $u(t) = \cos(2\pi t)$.

- $|H(j2\pi)| \approx 0.079$
- $\angle H(j2\pi) \approx -1.49 \text{ rad}$

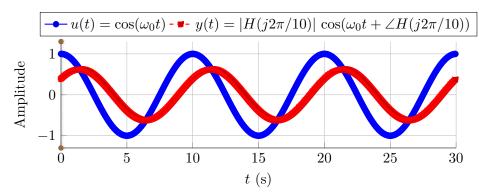


6.310

Example: $H(s) = \frac{1}{1+2s}$ for single input

Suppose
$$H(s) = \frac{1}{1+2s}$$
. We input $u(t) = \cos(\frac{2\pi}{10}t)$.

- $|H(j2\pi/10)| \approx 0.625$
- $\angle H(j2\pi/10) \approx -0.90 \text{ rad}$



6.310

Example: $H(s) = \frac{1}{1+2s}$ for different inputs

At $\omega_0 = 2\pi$: $|H(j\omega)| \approx -22.0 \text{ dB}$, $\angle H(j\omega) \approx -85.4^{\circ}$.

We will learn more about generating these plots next week.

6.310 Oct. 8, 2025 15 / 16

Summary

- Natural frequencies: describe the system's own free oscillations (transients).
- Frequency response: $H(j\omega)$ the system's gain and phase shift for forced sinusoidal inputs.
- The total response:

$$y(t) = \underbrace{\sum_{i} \alpha_{i} e^{\lambda_{i} t}}_{\text{transient (natural)}} + \underbrace{|H(j\omega)| \sin(\omega t + \angle H(j\omega))}_{\text{steady-state (forced)}}.$$

- As transients decay, the steady-state sinusoid remains.
- $H(j\omega)$ fully characterizes this steady-state relationship.

10 Oct. 8, 2025