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Review: s-Domain Description

We describe an LTI system by

Y = H(s)U, H(s) =
n(s)

d(s)
,

where H(s) is a rational function of polynomials,

n(s) = bℓ̂s
ℓ̂ + . . .+ b1s+ b0, d(s) = aℓs

ℓ + . . .+ a1s+ a0,

using the heuristic rule
d

dt
←→ s.

Turns a differential equation into algebra in the variable s.
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Natural Frequencies of Our System

In general,

(aℓs
ℓ + . . .+ a1s+ a0)Y = (bℓ̂s

ℓ̂ + . . .+ b1s+ b0)U.

Suppose u(t) = 0 ∀t⇒ U = 0 and y(t) =
∑

i αie
λit.

Then for each term,

aℓs
ℓY ←→ aℓ

dℓ

dtℓ
y(t),

dℓ

dtℓ
y(t) =

∑
i

λℓ
iαie

λit.

αi ̸= 0 iff λi is a root of d(s)|s=λi
= 0

The roots of d(s) are called the “natural frequencies.”
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Motivation: Why (Complex) Exponential Inputs?

We will choose an input function of the form: u(t) =
∑

i βie
sit.

Many signals in engineering are oscillatory: vibrations, AC power,
rotating machinery, etc.

Because the system is linear and time-invariant; knowing the
response to one sinusoid tells us how the system behaves for any
sum of sinusoids.

Idea: We can probe our system with exponentials of our choosing, es0t,
and analyze how the system output responds.
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Decomposing the System Response

For any input,

y(t) =
∑
i

αie
λit

︸ ︷︷ ︸
natural response

+ (response due to an input).

If the natural frequencies λi have negative real parts, the natural
response decays.

Today’s objective: understand the response due to a sinusoidal
input.
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Complex Exponential In, Complex Exponential Out

Recall our setup:

(aℓs
ℓ + aℓ−1s

ℓ−1 + · · ·+ a1s+ a0)Y = (bℓ̂s
ℓ̂ + · · ·+ b1s+ b0)U,

or equivalently,
d(s)Y = n(s)U.

We want to see how the system responds to an exponential input:

u(t) = es0t.

Because s↔ d
dt ,

skU ←→ dk

dtk
es0t = sk0e

s0t.

Try a particular solution: assume y(t) = Ces0t, where C is a
complex constant to be found.

6.310 Oct. 8, 2025 6 / 16



Complex Exponential In, Complex Exponential Out

Substitute y(t) = Ces0t ←→ Y and u(t) = es0t ←→ U into

d(s)|s=s0
Y = n(s)|s=s0

U.

Then:
d(s0)Ces0t = n(s0) e

s0t.

If d(s0) ̸= 0, we can cancel es0t to obtain

C =
n(s0)

d(s0)
,⇒ y(t) =

n(s0)

d(s0)
es0t .
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Special case: Complex exponential input.

If d(s0) ̸= 0, we can cancel es0t to obtain

C =
n(s0)

d(s0)
,⇒ y(t) =

n(s0)

d(s0)
es0t .

Let s0 = jω:

H(jω) ≡ n(jω)

d(jω)
, y(t) = H(jω)ejωt.

Recall Euler’s identity: ejθ = cos θ + j sin θ

The complex exponential ejωt NEVER decays to zero.
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Transient and Steady-State Responses

For a persisting sinusoidal input,

y(t) =
∑
i

αie
λit

︸ ︷︷ ︸
natural response

+ (sinusoidal steady state response).

If the natural frequencies λi have negative real parts, the natural
response decays.

Dies out with time; referred to as the transient response.

We have the tools necessary to determine the sinusoidal steady
state response.
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Sinusoidal Steady State

Suppose our input takes the form u(t) = cosωt. What is y(t)?

Euler’s identity: u(t) = 1
2

(
ejωt + e−jωt

)
Through superposition, we know that,

y(t) =
1

2

(
H(jω)ejωt +H(−jω)e−jωt

)
,

= ℜ
{
H(jω)ejωt

}
,

= ℜ
{
|H(jω)|ej∠H(jω)ejωt

}
,

= ℜ
{
|H(jω)|ej(ωt+∠H(jω))

}
,

= |H(jω)| cos(ωt+ ∠H(jω)),

Compared with u(t), output y(t)’s magnitude scales by |H(jω)|
and its phase changes by ∠H(jω).
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Defining the Frequency Response

The frequency response of a continuous-time LTI system is

H(jω) ≡ H(s)
∣∣
s=jω

.

H(jω) = |H(jω)|ej∠H(jω) is complex.

|H(jω)|: amplitude ratio (gain) ∠H(jω): phase shift.

Together, they describe the steady-state output for any sinusoidal
input.
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Interpreting the Frequency Response

|H(jω)|: how much the system amplifies or attenuates each input
frequency.

The shape of |H(jω)| reveals which input frequencies excite the
system strongly (those near its natural frequencies).

∠H(jω): how much the system shifts each frequency in time.

The frequency response is therefore the bridge between the
system’s natural dynamics and its steady-state behavior under
sinusoidal forcing.
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Example: H(s) =
1

1 + 2s
for single input

Suppose H(s) =
1

1 + 2s
. We input u(t) = cos(2πt).

|H(j2π)| ≈ 0.079

∠H(j2π) ≈ −1.49 rad
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u(t) = cos(ω0t) y(t) = |H(j2π)| cos(ω0t+ ∠H(j2π))
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Example: H(s) =
1

1 + 2s
for single input

Suppose H(s) =
1

1 + 2s
. We input u(t) = cos(2π10 t).

|H(j2π/10)| ≈ 0.625

∠H(j2π/10) ≈ −0.90 rad
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u(t) = cos(ω0t) y(t) = |H(j2π/10)| cos(ω0t+ ∠H(j2π/10))
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Example: H(s) =
1

1 + 2s
for different inputs
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At ω0 = 2π: |H(jω)| ≈ −22.0 dB, ∠H(jω) ≈ −85.4◦.

We will learn more about generating these plots next week.
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Summary

Natural frequencies: describe the system’s own free oscillations
(transients).

Frequency response: H(jω) — the system’s gain and phase shift
for forced sinusoidal inputs.

The total response:

y(t) =
∑
i

αie
λit

︸ ︷︷ ︸
transient (natural)

+ |H(jω)| sin(ωt+ ∠H(jω))︸ ︷︷ ︸
steady-state (forced)

.

As transients decay, the steady-state sinusoid remains.

H(jω) fully characterizes this steady-state relationship.
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