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Review: s-Domain Description

o We describe an LTI system by

where H(s) is a rational function of polynomials,

n(s)zbgsé+-"+bls+bo, d(s) = ags* + ... + ars + ag,

e using the heuristic rule

— > s.
dt

Turns a differential equation into algebra in the variable s.
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Natural Frequencies of Our System
In general,

(agsg +...+as+ag)y = (bgsg + ...+ bis+by)U.
Suppose u(t) =0Vt = U =0 and y(t) = >, azeri’

Then for each term,

df
4
aps'Y < agwy(t), dtfy g Mae?

a; # 0 iff A; is a root of d(s)[,_y, =0

@ The roots of d(s) are called the “natural frequencies.”
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Motivation: Why (Complex) Exponential Inputs?

We will choose an input function of the form: u(t) =, ;e

e Many signals in engineering are oscillatory: vibrations, AC power,
rotating machinery, etc.

@ Because the system is linear and time-invariant; knowing the
response to one sinusoid tells us how the system behaves for any
sum of sinusoids.

Idea: We can probe our system with exponentials of our choosing, et
and analyze how the system output responds.

)
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Decomposing the System Response

e For any input,

y(t) = Z a;e’t 4 (response due to an input).
i

———

natural response

o If the natural frequencies \; have negative real parts, the natural
response decays.

e Today’s objective: understand the response due to a sinusoidal
input.
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Complex Exponential In, Complex Exponential Out

Recall our setup:

(ags* +ap_1s" L+ +ais+ay)Y = (blgsZ + - 4+ bis+b)U,

or equivalently,

We want to see how the system responds to an exponential input:
u(t) = e,

Because s < %,
k dk
SFU — ——e%0t = gkesot,
dtk
Try a particular solution: assume y(t) = Ce®!, where C is a
complex constant to be found.
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Complex Exponential In, Complex Exponential Out

Substitute y(t) = Ce®t <+— Y and u(t) = e*°! +— U into
d(s)\szso Y = n(s)| U

5$=50 *

Then:
d(sp) Ce*" = n(sg) e*".

If d(sg) # 0, we can cancel e*°! to obtain

] 6.310 Oct. 8, 2025 7/16



Special case: Complex exponential input.

If d(sg) # 0, we can cancel e to obtain
n(so) n(s0) ot
C= = y(t) = e
aiso) " (s
Let sg = jw:
H(jw) = Y9 4y = By
d(jw)

o Recall Euler’s identity: e/ = cos@ + jsin6

e The complex exponential ¢/“* NEVER decays to zero.
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Transient and Steady-State Responses

e For a persisting sinusoidal input,

y(t) = Z ;e 4 (sinusoidal steady state response).
i

—_———

natural response

o If the natural frequencies \; have negative real parts, the natural
response decays.

e Dies out with time; referred to as the transient response.

o We have the tools necessary to determine the sinusoidal steady
state response.
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Sinusoidal Steady State

Suppose our input takes the form u(t) = coswt. What is y(t)?

Euler’s identity: u(t) = 3 (e’ 4 e=9%)

@ Through superposition, we know that,

(H(jw)e’" + H(—jw)e ),
{H(jw)e"},

|H jw)’ejLH(jw)ejwt} ’

{1
{|H( w)’ej(wHéH(jw))}
)

)

e Compared with u(t), output y(¢)’s magnitude scales by |H (jw)|
and its phase changes by ZH (jw).
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Defining the Frequency Response

The frequency response of a continuous-time LTI system is

H(jw) = H(s)|

s=jw’
H(jw) = |H(jw)|e?“10%) is complex.
|H (jw)|: amplitude ratio (gain) ZH (jw): phase shift.

o Together, they describe the steady-state output for any sinusoidal
input.
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Interpreting the Frequency Response

|H (jw)|: how much the system amplifies or attenuates each input
frequency.

The shape of |H (jw)| reveals which input frequencies excite the
system strongly (those near its natural frequencies).

ZH (jw): how much the system shifts each frequency in time.

The frequency response is therefore the bridge between the
system’s natural dynamics and its steady-state behavior under
sinusoidal forcing.
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Example: H(s) = T3 for single input
S

. We input u(t) = cos(2mt).

Suppose H(s) = 152
e |H(j2m)| =~ 0.079
o /H(j2m) ~ —1.49 rad

—o—u(t) = cos(wot) - ®- y(t) = |H(j27)| cos(wot + £LH (j27))

Amplitude

13 /16
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Example: H(s) = T3 for single input
S

We input u(t) = cos(35t).

Suppose H(s) = 525
e |H(j2m/10)| =~ 0.625
e /H(j2m/10) ~ —0.90 rad

—o—u(t) = cos(wot) - ®- y(t) = |H(j27/10)| cos(wot + £LH (527/10))

Amplitude

14 /16
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Example: H(s) = ——— for different inputs
14 2s
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At wo = 27 |H(jw)| &~ —22.0 dB, ZH (jw) ~ —85.4°.

We will learn more about generating these plots next week.
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Summary

Natural frequencies: describe the system’s own free oscillations
(transients).

Frequency response: H(jw) — the system’s gain and phase shift
for forced sinusoidal inputs.

@ The total response:

y(t) = Z et +lH(jw)| sin(wt + ZH (jw)) .

——— steady-state (forced)

transient (natural)

As transients decay, the steady-state sinusoid remains.

H(jw) fully characterizes this steady-state relationship.
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