Dynamic System Modeling and Control Design Linearity, Time Invariance, Parameter Identification

Sept. 10, 2025

Outline

Recap of Last Lecture

2 Linearity and Time Invariance

3 Estimating System Parameters λ & γ

Recap: Generic Control System

3 / 23

Recap: Generic Control System

Teensy Microcontroller

Recap: Generic Control System

Teensy Microcontroller

$$T_m[n] = T_m[n-1] + \Delta T \gamma_{th} u[n-1] \underbrace{-\Delta T \beta T_m[n-1]}_{\text{heat loss term}}$$

6.310

Sept. 10, 2025

Recap: General Form of First Order Difference Equation (FODE)

The general form of a first order difference equation:

$$y[n] = \lambda y[n-1] + \gamma u[n-1] \quad (\#1)$$

Notes on the general form:

- Our goal is to solve for y[n],
- u[n] is the input or driving function we set,
- λ, γ are system parameters.

Recap: General Solutions of FODE

From the general form,

$$y[n] = \lambda y[n-1] + \gamma u[n-1] \quad (\#1)$$

we found the general solution, for arbitrary n, to be:

$$y[n] = \lambda^n y[0] + \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u[m]$$

Additionally, two special cases:

- Zero Input Response: If $u[n] = 0 \ \forall n : \ y[n] = \lambda^n y[0]$
- Zero State Response: If y[0] = 0: $y[n] = \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u[m]$

6.310

Sept. 10, 2025

Recap: Steady State Response

If $u[n] = u_0 \ \forall n$ (i.e., constant input) AND $|\lambda| < 1$, then...

$$\lim_{n \to \infty} y[n] := y[\infty] = \frac{\gamma}{1 - \lambda} u_0.$$

For example, for the heating example with proportional control, with $u[n] = K_p(T_d[n] - T_m[n])$ and $|\lambda| = |1 - \Delta T \gamma_{th} K_p| < 1$,

$$T_m[\infty] = \frac{\gamma_{th} K_p}{\gamma_{th} K_p + \beta} T_{d_0}$$

Today's First Objective

How do we go from this...

n

Today's First Objective

Answer: Linearity and Time Invariance.

Today's First Objective

Answer: Linearity and Time Invariance.

Today's Second Objective

We have this nice FODE:

$$y[n] = \lambda y[n-1] + \gamma u[n-1]$$
 (#1)

What are λ and γ ? How do we find them?

We will introduce how to estimate these system parameters today!

Property I: Decomposition of General Solution

Recall our two special cases:

- Zero Input Response: If $u[n] = 0 \ \forall n : \ y[n] = \lambda^n y[0]$
- Zero State Response: If y[0] = 0: $y[n] = \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u[m]$

Then we can decompose y[n] into its ZIR and ZSR:

$$y[n] = \lambda^{n} y[0] + \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u[m]$$
(I): $y[n] = y_{ZIR}[n] + y_{ZSR}[n]$

Property II: Linearity & Time Invariance of ZSR

Suppose that I have two different input functions $u_A[n]$, $u_B[n]$. Then,

$$y_{A,ZSR}[n] = \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u_A[m],$$

$$y_{B,ZSR}[n] = \gamma \sum_{m=0}^{n-1} \lambda^{(n-m)-1} u_B[m].$$

Assume $u_A[n] = u_B[n] = 0 \ \forall n < 0 \ \text{and} \ N_A, N_B > 0.$

If
$$u[n] = \alpha u_A[n - N_A] + \beta u_B[n - N_B]$$
, then

(II):
$$y_{ZSR}[n] = \alpha y_{A,ZSR}[n - N_A] + \beta y_{B,ZSR}[n - N_B].$$

Property III: An Aspect of Time Invariance of ZIR

If
$$u[n] = 0 \ \forall n \geq N$$
, then

(III):
$$y[n] = \lambda^{n-N} y[N], \ \forall n > N.$$

Proof sketch:

$$y[N+1] = \lambda y[N] + \gamma u[N]$$

$$y[N+2] = \lambda y[N+1] + \gamma u[N+1]$$

$$= \lambda^2 y[N]$$

$$y[N+3] = \lambda^3 y[N]$$
:

Steady State for General System (Using (I) - (III))

Suppose that I have $|\lambda| < 1$ and an input function $u_1[n]$ defined by,

$$u_1[n] = 0, n < N$$

 $u_1[n] = 1, n \ge N.$

with an initial state of $y_1[0] = 0$. What is $y_1[n]$?

Steady State for General System (Using (I) - (III))

Suppose that I have $|\lambda| < 1$ and an input function $u_1[n]$ defined by,

$$u_1[n] = 0, n < N$$

 $u_1[n] = 1, n \ge N.$

with an initial state of $y_1[0] = 0$. What is $y_1[n]$?

Let's find out using Properties (I)-(III)!

Consider a system with

$$y_2[0] = \frac{\gamma}{1-\lambda},$$

 $u_2[n] = 1 \ n < N,$
 $u_2[n] = 0 \ n \ge N.$

What is $y_2[n]$ for n > N?

Consider a system with

$$y_2[0] = \frac{\gamma}{1-\lambda},$$

 $u_2[n] = 1 \ n < N,$
 $u_2[n] = 0 \ n \ge N.$

What is $y_2[n]$ for n > N?

We can use Property (III): Time Invariance of ZIR:

$$y_2[n] = \frac{\gamma}{1-\lambda} \ n \le N$$
$$y_2[N+1] = \lambda y_2[N] = \lambda \frac{\gamma}{1-\lambda}$$
$$y_2[N+n] = \lambda^{(n-N)} \frac{\gamma}{1-\lambda}$$

Consider a system with

$$y_3[0] = \frac{\gamma}{1-\lambda},$$

$$u_3[n] = 1 \ \forall n,$$

What is $y_3[n]$?

Consider a system with

$$y_3[0] = \frac{\gamma}{1-\lambda},$$

$$u_3[n] = 1 \ \forall n,$$

What is $y_3[n]$?

Since we initialized at steady state, and the input function $u_3[n]$ does not change, we will remain in steady state.

$$y_3[n] = \frac{\gamma}{1-\lambda}.$$

Steady State for General System (Using (I) - (III))

Recall that $|\lambda| < 1, u[n] = u_0 \ \forall n > N$, then $y[\infty] = \frac{\gamma}{1-\lambda}u_0$. Suppose that I have $|\lambda| < 1$ and an input function $u_1[n]$ defined by,

$$u_1[n] = 0, n < N$$

 $u_1[n] = 1, n \ge N.$

with an initial state of $y_1[0] = 0$. What is $y_1[n]$?

Steady State for General System (Using (I) - (III))

Recall that $|\lambda| < 1, u[n] = u_0 \ \forall n > N$, then $y[\infty] = \frac{\gamma}{1-\lambda}u_0$. Suppose that I have $|\lambda| < 1$ and an input function $u_1[n]$ defined by,

$$u_1[n] = 0, n < N$$

 $u_1[n] = 1, n \ge N.$

with an initial state of $y_1[0] = 0$. What is $y_1[n]$? We can use Property (II): Linearity of ZSR

Since $u_1[n] = u_3[n] - u_2[n]$, we know that $y_1[0] = y_3[0] - y_2[0]$. Therefore,

$$y_1[n] = y_3[n] - y_2[n]$$

$$= \frac{\gamma}{1-\lambda} - \lambda^{n-N} \frac{\gamma}{1-\lambda}, \ n > N$$

$$= \frac{\gamma}{1-\lambda} (1-\lambda^{n-N}), \ n > N.$$

Now, we can fill in the gap...

6.310

Now, we can fill in the gap...

$$y_1[n] = \frac{\gamma}{1-\lambda} (1-\lambda^{n-N}), \ n > N, \underline{-1 < \lambda < 0}.$$

n

Recall Today's Second Objective

We have this nice FODE:

$$y[n] = \lambda y[n-1] + \gamma u[n-1] \quad (\#1)$$

We can (experimentally) estimate λ, γ in many different ways.

Recall Today's Second Objective

We have this nice FODE:

$$y[n] = \lambda y[n-1] + \gamma u[n-1]$$
 (#1)

We can (experimentally) estimate λ, γ in many different ways.

In particular, we have two unknowns. Let's find two equations and solve.

Evaluate Steady State Response

Assuming...

$$y[0] = 0, 0 < \lambda < 1, y[n] = \lambda y[n-1] + \gamma u[n-1], u[n] = 1,$$

we already have one relationship!

$$y[\infty] = \frac{\gamma}{1-\lambda} \Rightarrow \gamma = y[\infty](1-\lambda).$$

Evaluate Decay

Let $u[n] = 1 \ \forall n \leq N$. How many steps does it take to decay halfway?

From Property (III) Time Invariance of ZIR:

$$\frac{\gamma}{1-\lambda}\lambda^{M} = 0.5 \frac{\gamma}{1-\lambda}$$
$$\Rightarrow \lambda = 0.5^{1/M}.$$
$$\Rightarrow \gamma = y[\infty](1 - 0.5^{1/M})$$

Closing Thoughts

How can we generate the previous two plots?

- We get to pick which controller we use (and set the gains)!
- We can find an expression for λ which will (probably) be a function of the gain(s) of our controller.
- We can pick gains such that we truly reach zero steady state error.