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Recap of Last Lecture

Recap: Disturbance Modeling

System Equation w/o Disturbance:
z[n] = Az[n — 1] + Buln — 1]

A, B depend on the physical model and controller. System Equation
w/ Disturbance:

Tdist [n] = Axgist [n - 1] + Bu[n - 1] + Baist Udist [n - 1]
Disturb Response

e[n] £ zai[n] — z[n],
= Ae[n — 1] + Baissuaist[n — 1].
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Recap of Last Lecture

Recap: Steady-State of Disturb Response

Suppose uqgist[n] = ugist[00], Vn. The steady-state disturb response is:
efoc] = (I — A)™" Baisyuaist[oc]
In particular, we have,

e1]o0] Baist 1
=(I-A) | uaist[od],

en (o] NxN Baist,N

such that I can model a disturbance in any state, scaled by ugjst.
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Recap of Last Lecture

The Dream Controller

With our steady-state disturbance response:

G[OO] = (I - A)_l Bistudist [OO],
our controller in part defines the matrix A.

Goal: design a STABLE controller with e[oo] = 0 for any disturbance
Buist.-

o Equivalently, we want (I — A)~!Bgi; = 0 for all Bgjs.

e Stability makes this impossible!

e What can’t be done? And what can?
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Alignment Problem

Impossibility: Zero Offset for Fvery Disturbance
Direction

Claim: If A is stable (all |\;(A)| < 1), it is impossible to design a
controller such that

eloo] = (I — A)_leiSt ugist[0o] =0 for every nonzero Bygigt.

Reasoning (invertibility / nullspace): For stable A, I — A is
invertible, hence so is (I — A)~!. An invertible linear map has a trivial
nullspace:

I-Alv=0= v=0.

Thus (I — A) ™ Byistudist [00] = 0 for all Bgis; would force
Bdistudist [OO] =0.
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Alignment Problem

Eigen-Decomposition View

Assume A is diagonalizable: A = VAV ™! with A = diag(A1,..., )
and |A;| < 1. Then

(I-At=v(I-ANTVv (I—A)"t =diag((1—X\)71).
Key point: For stability, 1 — \; # 0, so each (1 — \;)~! is finite and

nonzero. Therefore (I — A)~! is invertible with no nontrivial nullspace;
it cannot annihilate every disturbance direction.
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Alignment Problem

Impossibility: Zero Offset for a Single State for Every
Disturbance

Recall, for constant disturbances:
efoo] = (I — A) ™! Byigt ugist[00].
Let 7, be the ith row of (I — A)~!. Then the ith component is
ei[o0] = 1 Baist tdist[00].

Suppose we demand e;[oc] = 0 for every disturbance direction Bgjst
(and any nonzero ugist[00]). Then

riv=0 forallveR" = r; =0.

But a zero row in (I — A)~! implies rank (I — A)™!) <n -1, ie.
(I — A)~!is singular.
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Alignment Problem

What Is Possible?

You can achieve e[oco] = 0 for a chosen class of disturbances by
embedding their internal model in the controller.

@ In other words, we can augment our system with a new state
which can inform the design of a new controller.

But no stable controller can guarantee e[occ] = 0 for every disturbance
direction Bgigt.

e Instead, design a controller so that e;[oo] = 0 for some states and
some Bgist’s.
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Introducing Integral-Based Control

Countering Steady-State Error

Disturbances cause a non-zero steady-state error. What can we do?
Introduce new state (accumulation of distance error):

qln] = qln — 1] = AT (da[n] — d[n]).

Full system now has three states:

din—1]+ AT v0n — 1],
O[n] =0[n — 1] + AT w[n — 1],
qln — 1] = AT (dg[n] — d[n]).

] 6.310 Sept. 24, 2025 10 / 20



Introducing Integral-Based Control

What is ¢[n]?

Suppose we use wln] = K,(dg4[n] — din]) — Kyf[n], and track,
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q[n] accumulates the distance error over time.
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Introducing In -Based Control

What is ¢[n]?
Suppose we use w[n] = K,(d4[n] — dn]) — Kyf[n], and track,

q[n] = q[n — 1] — AT (d4[n] — d[n]) :
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g[n] accumulates the distance error over time.
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Introducing In -Based Control

What is q[n]? With Disturbance.
Suppose we use w[n] = K,(d4[n] — dn]) — Kyf[n], and track,

q[n] = q[n — 1] = AT (d4[n] — d[n]) :
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g[n] accumulates the distance error over time.
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Introducing Integral-Based Control

Adding Integral State

Full system now has three states:

din—1]+ AT v0n — 1],
O[n] =0ln — 1] + AT wn — 1],
qln — 1] = AT (da[n] — d[n}).

New controller:
w(n] = Kp (da[n] = d[n]) — Kq [n] — Kig[n].
Interpretation: g[n] accumulates (sums) the distance error, so including

q[n] ensures the controller reacts to long-term offsets and drives
steady-state error to zero.
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Introducing Integral-Based Control

System Equations with Accumulator State

State vector (with accumulator state included):

d[n]
z[n] = |6[n]
qln]
System equations:
1 ATv 0 0
zln] = |-ATK, 1-ATKy —ATK;|zn—1] + |ATK,| d4n—1].
AT 0 1 —AT
—_——
A B
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Introducing Integral-Based Control

Stability of A?

What are the eigenvalues of A?

1 AT v 0
-ATK, 1-ATKy —-ATK;| =
AT 0 1
A
1 00 0 v 0
01 0| -AT |-K, —-Ky -K;
0 0 1 1 0 0
M

@ We can use Spectral Mapping Theorem:
evals(A) = 1 — ATevals(M).

e How do we pick K, Ky, K;? Let’s use numerical tools.
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Introducing Integral-Based Control

Computing (I — A)~!

Integral-augmented system matrix:

1 AT v 0
A= |-ATK, 1-ATKy —-ATK;
AT 0 1
0 —v 0
=1-A=AT |K, Ky K;
-1 0 0

We can find a very simple inverse,

0 0 -1
1
_ 1 — 0 0
I—A)'=——
I-A)" =5 | v
Ky 1 K,
KZ‘V KZ Ki
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Introducing Integral-Based Control

Steady-State Checks (Without Disturbance)

Input matrix for constant d;:

0 0 -1
1 1 —l 0 0 0 -1 L
(I-A)"" = AT v , B=|ATK,|,(I[-A)""B= |0
Ky 1 K, —AT 0

For any constant desired distance dg[oo],
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Introducing In -Based Control

Disturbance: Constant Lateral Drift (“Wind”)

Additive offset in d: dn] =d[n — 1] + ATvO[n — 1] + AT(777).

N—_——
wind?
AT
As a constant input: Bg= | 0
0
Steady-state:
0
1
(I - A)ileist = 1%
Ky
Ki v
Interpretation: Integral action drives the distance error to zero, but a
constant drift induces a steady heading bias 0[oc] = —1/v, with

qloc] = (Ko /(K;v)).
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Introducing In -Based Control

Disturbance: Constant Bias in 6 (“Cyclone”)

Additive offset in 0: O[n] = 0[n — 1] + AT (wn — 1)) + AT(777).

N——
cyclone?
0
As a constant input: By = |AT
0

Steady-state:

0
I — A) ' By, = 0
1

K;
Interpretation: The integrator ramps to g[oo] = 1/K; and cancels the
bias; thus d[oo] = @[oo] = 0 despite the constant angle offset.
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