Dynamic System Modeling and Control Design Matrix PID

Sept. 24, 2025

Outline

- Recap of Last Lecture
- 2 Alignment Problem

3 Introducing Integral-Based Control

Recap: Disturbance Modeling

System Equation w/o Disturbance:

$$x[n] = Ax[n-1] + Bu[n-1]$$

A, B depend on the physical model and controller. System Equation w/ Disturbance:

$$x_{\text{dist}}[n] = Ax_{\text{dist}}[n-1] + Bu[n-1] + B_{\text{dist}}u_{\text{dist}}[n-1]$$

Disturb Response

$$e[n] \triangleq x_{\text{dist}}[n] - x[n],$$

= $Ae[n-1] + B_{\text{dist}}u_{\text{dist}}[n-1].$

Recap: Steady-State of Disturb Response

Suppose $u_{\text{dist}}[n] = u_{\text{dist}}[\infty]$, $\forall n$. The steady-state disturb response is:

$$e[\infty] = (I - A)^{-1} B_{\text{dist}} u_{\text{dist}}[\infty]$$

In particular, we have,

$$\begin{bmatrix} e_1[\infty] \\ \vdots \\ e_N[\infty] \end{bmatrix} = \underbrace{(I-A)^{-1}}_{N\times N} \begin{bmatrix} B_{\text{dist},1} \\ \vdots \\ B_{\text{dist},N} \end{bmatrix} u_{\text{dist}}[\infty],$$

such that I can model a disturbance in any state, scaled by u_{dist} .

The Dream Controller

With our steady-state disturbance response:

$$e[\infty] = (I - A)^{-1} B_{\text{dist}} u_{\text{dist}}[\infty],$$

our controller in part defines the matrix A.

Goal: design a STABLE controller with $e[\infty] = 0$ for any disturbance B_{dist} .

- Equivalently, we want $(I A)^{-1}B_{\text{dist}} = 0$ for all B_{dist} .
- Stability makes this impossible!
- What can't be done? And what can?

Sept. 24, 2025 5 / 20

Impossibility: Zero Offset for *Every* Disturbance Direction

Claim: If A is stable (all $|\lambda_i(A)| < 1$), it is *impossible* to design a controller such that

$$e[\infty] = (I - A)^{-1} B_{\text{dist}} u_{\text{dist}}[\infty] = 0$$
 for every nonzero B_{dist} .

Reasoning (invertibility / nullspace): For stable A, I - A is invertible, hence so is $(I - A)^{-1}$. An invertible linear map has a trivial nullspace:

$$(I - A)^{-1}v = 0 \implies v = 0.$$

Thus $(I - A)^{-1}B_{\text{dist}}u_{\text{dist}}[\infty] = 0$ for all B_{dist} would force $B_{\text{dist}}u_{\text{dist}}[\infty] = 0$.

6 / 20

Eigen-Decomposition View

Assume A is diagonalizable: $A = V\Lambda V^{-1}$ with $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ and $|\lambda_i| < 1$. Then

$$(I-A)^{-1} = V(I-\Lambda)^{-1}V^{-1}, \qquad (I-\Lambda)^{-1} = \operatorname{diag}((1-\lambda_i)^{-1}).$$

Key point: For stability, $1 - \lambda_i \neq 0$, so each $(1 - \lambda_i)^{-1}$ is finite and nonzero. Therefore $(I - A)^{-1}$ is invertible with no nontrivial nullspace; it cannot annihilate every disturbance direction.

0 Sept. 24, 2025 7 / 20

Impossibility: Zero Offset for a Single State for *Every* Disturbance

Recall, for constant disturbances:

$$e[\infty] = (I - A)^{-1} B_{\text{dist}} u_{\text{dist}}[\infty].$$

Let r_i^{\top} be the *i*th row of $(I-A)^{-1}$. Then the *i*th component is

$$e_i[\infty] = r_i^{\top} B_{\text{dist}} u_{\text{dist}}[\infty].$$

Suppose we demand $e_i[\infty] = 0$ for every disturbance direction B_{dist} (and any nonzero $u_{\text{dist}}[\infty]$). Then

$$r_i^{\top} v = 0$$
 for all $v \in \mathbb{R}^n \implies r_i = 0$.

But a zero row in $(I - A)^{-1}$ implies rank $((I - A)^{-1}) \le n - 1$, i.e. $(I - A)^{-1}$ is singular.

What *Is* Possible?

You can achieve $e[\infty] = 0$ for a **chosen class** of disturbances by embedding their internal model in the controller.

• In other words, we can augment our system with a <u>new state</u> which can inform the design of a new controller.

But no stable controller can guarantee $e[\infty] = 0$ for every disturbance direction B_{dist} .

• Instead, design a controller so that $e_i[\infty] = 0$ for <u>some</u> states and <u>some</u> B_{dist} 's.

Countering Steady-State Error

Disturbances cause a non-zero steady-state error. What can we do? Introduce new state (accumulation of distance error):

$$q[n] = q[n-1] - \Delta T (d_d[n] - d[n]).$$

Full system now has three states:

$$\begin{split} d[n] &= d[n-1] + \Delta T \, \nu \, \theta[n-1], \\ \theta[n] &= \theta[n-1] + \Delta T \, \omega[n-1], \\ q[n] &= q[n-1] - \Delta T \, (d_d[n] - d[n]). \end{split}$$

What is q[n]?

Suppose we use $\omega[n] = K_p(d_d[n] - d[n]) - K_\theta\theta[n]$, and track,

$$q[n] = q[n-1] - \Delta T (d_d[n] - d[n]) :$$

q[n] accumulates the distance error over time.

What is q[n]?

Suppose we use $\omega[n] = K_p(d_d[n] - d[n]) - K_\theta\theta[n]$, and track,

$$q[n] = q[n-1] - \Delta T (d_d[n] - d[n]) :$$

q[n] accumulates the distance error over time.

What is q[n]? With Disturbance.

Suppose we use $\omega[n] = K_p(d_d[n] - d[n]) - K_\theta\theta[n]$, and track,

$$q[n] = q[n-1] - \Delta T (d_d[n] - d[n]) :$$

q[n] accumulates the distance error over time.

Adding Integral State

Full system now has three states:

$$d[n] = d[n-1] + \Delta T \nu \theta[n-1],$$

$$\theta[n] = \theta[n-1] + \Delta T \omega[n-1],$$

$$q[n] = q[n-1] - \Delta T (d_d[n] - d[n]).$$

New controller:

$$\omega[n] = K_p \left(d_d[n] - d[n] \right) - K_\theta \theta[n] - K_i q[n].$$

Interpretation: q[n] accumulates (sums) the distance error, so including $-K_iq[n]$ ensures the controller reacts to long-term offsets and drives steady-state error to zero.

System Equations with Accumulator State

State vector (with accumulator state included):

$$x[n] = \begin{bmatrix} d[n] \\ \theta[n] \\ q[n] \end{bmatrix}.$$

System equations:

$$x[n] = \underbrace{\begin{bmatrix} 1 & \Delta T \, \nu & 0 \\ -\Delta T K_p & 1 - \Delta T K_\theta & -\Delta T K_i \\ \Delta T & 0 & 1 \end{bmatrix}}_{A} x[n-1] \, + \, \underbrace{\begin{bmatrix} 0 \\ \Delta T K_p \\ -\Delta T \end{bmatrix}}_{B} d_d[n-1].$$

Stability of A?

What are the eigenvalues of A?

$$\begin{bmatrix}
1 & \Delta T \nu & 0 \\
-\Delta T K_p & 1 - \Delta T K_{\theta} & -\Delta T K_i \\
\Delta T & 0 & 1
\end{bmatrix} = \underbrace{\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}}_{A} - \Delta T \underbrace{\begin{bmatrix}
0 & \nu & 0 \\
-K_p & -K_{\theta} & -K_i \\
1 & 0 & 0
\end{bmatrix}}_{M}$$

• We can use Spectral Mapping Theorem:

$$evals(A) = 1 - \Delta Tevals(M).$$

• How do we pick K_p , K_θ , K_i ? Let's use numerical tools.

Computing $(I - A)^{-1}$

Integral-augmented system matrix:

$$A = \begin{bmatrix} 1 & \Delta T \nu & 0 \\ -\Delta T K_p & 1 - \Delta T K_\theta & -\Delta T K_i \\ \Delta T & 0 & 1 \end{bmatrix}$$
$$\Rightarrow I - A = \Delta T \begin{bmatrix} 0 & -\nu & 0 \\ K_p & K_\theta & K_i \\ -1 & 0 & 0 \end{bmatrix}.$$

We can find a very simple inverse,

$$(I - A)^{-1} = \frac{1}{\Delta T} \begin{bmatrix} 0 & 0 & -1 \\ -\frac{1}{\nu} & 0 & 0 \\ \frac{K_{\theta}}{K_{i} \nu} & \frac{1}{K_{i}} & \frac{K_{p}}{K_{i}} \end{bmatrix}.$$

Steady-State Checks (Without Disturbance)

Input matrix for constant d_d :

$$(I-A)^{-1} = \frac{1}{\Delta T} \begin{bmatrix} 0 & 0 & -1 \\ -\frac{1}{\nu} & 0 & 0 \\ \frac{K_{\theta}}{K_{i}\nu} & \frac{1}{K_{i}} & \frac{K_{p}}{K_{i}} \end{bmatrix}, B = \begin{bmatrix} 0 \\ \Delta T K_{p} \\ -\Delta T \end{bmatrix}, (I-A)^{-1}B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

For any constant desired distance $d_d[\infty]$,

$$\begin{bmatrix} d[\infty] \\ \theta[\infty] \\ q[\infty] \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} d_d[\infty]$$

Disturbance: Constant Lateral Drift ("Wind")

Additive offset in d:
$$d[n] = d[n-1] + \Delta T \nu \theta[n-1] + \underbrace{\Delta T(???)}_{\text{wind}?}$$

As a constant input:
$$B_{\text{dist}} = \begin{bmatrix} \Delta T \\ 0 \\ 0 \end{bmatrix}$$
.

Steady-state:

$$(I - A)^{-1}B_{\text{dist}} = \begin{vmatrix} 0 \\ -\frac{1}{\nu} \\ \frac{K_{\theta}}{K_{i}\nu} \end{vmatrix}.$$

Interpretation: Integral action drives the distance error to zero, but a constant drift induces a steady heading bias $\theta[\infty] = -1/\nu$, with $q[\infty] = (K_{\theta}/(K_i \nu))$.

Disturbance: Constant Bias in θ ("Cyclone")

Additive offset in
$$\theta$$
: $\theta[n] = \theta[n-1] + \Delta T(\omega[n-1]) + \underbrace{\Delta T(???)}_{\text{cyclone}}$.

As a constant input:
$$B_{\text{dist}} = \begin{bmatrix} 0 \\ \Delta T \\ 0 \end{bmatrix}$$
.

Steady-state:

$$(I-A)^{-1}B_{\text{dist}} = \begin{bmatrix} 0\\0\\\frac{1}{K_i} \end{bmatrix}.$$

Interpretation: The integrator ramps to $q[\infty] = 1/K_i$ and cancels the bias; thus $d[\infty] = \theta[\infty] = 0$ despite the constant angle offset.