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Recap of Last Lecture

Recap: Disturbance Modeling

System Equation w/o Disturbance:

x[n] = Ax[n− 1] +Bu[n− 1]

A,B depend on the physical model and controller. System Equation
w/ Disturbance:

xdist[n] = Axdist[n− 1] +Bu[n− 1] +Bdistudist[n− 1]

Disturb Response

e[n] , xdist[n]− x[n],

= Ae[n− 1] +Bdistudist[n− 1].
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Recap of Last Lecture

Recap: Steady-State of Disturb Response

Suppose udist[n] = udist[∞], ∀n. The steady-state disturb response is:

e[∞] = (I −A)−1Bdistudist[∞]

In particular, we have, e1[∞]
...

eN [∞]

 = (I −A)−1︸ ︷︷ ︸
N×N

Bdist,1
...

Bdist,N

udist[∞],

such that I can model a disturbance in any state, scaled by udist.
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Recap of Last Lecture

The Dream Controller

With our steady-state disturbance response:

e[∞] = (I −A)−1Bdistudist[∞],

our controller in part defines the matrix A.

Goal: design a STABLE controller with e[∞] = 0 for any disturbance
Bdist.

Equivalently, we want (I −A)−1Bdist = 0 for all Bdist.

Stability makes this impossible!

What can’t be done? And what can?
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Alignment Problem

Impossibility: Zero Offset for Every Disturbance
Direction

Claim: If A is stable (all |λi(A)| < 1), it is impossible to design a
controller such that

e[∞] = (I −A)−1Bdist udist[∞] = 0 for every nonzero Bdist.

Reasoning (invertibility / nullspace): For stable A, I −A is
invertible, hence so is (I −A)−1. An invertible linear map has a trivial
nullspace:

(I −A)−1v = 0 ⇒ v = 0.

Thus (I −A)−1Bdistudist[∞] = 0 for all Bdist would force
Bdistudist[∞] = 0.
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Alignment Problem

Eigen-Decomposition View

Assume A is diagonalizable: A = V ΛV −1 with Λ = diag(λ1, . . . , λn)
and |λi| < 1. Then

(I −A)−1 = V (I − Λ)−1V −1, (I − Λ)−1 = diag
(
(1− λi)−1

)
.

Key point: For stability, 1− λi 6= 0, so each (1− λi)−1 is finite and
nonzero. Therefore (I −A)−1 is invertible with no nontrivial nullspace;
it cannot annihilate every disturbance direction.
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Alignment Problem

Impossibility: Zero Offset for a Single State for Every
Disturbance

Recall, for constant disturbances:

e[∞] = (I −A)−1Bdist udist[∞].

Let r>i be the ith row of (I −A)−1. Then the ith component is

ei[∞] = r>i Bdist udist[∞].

Suppose we demand ei[∞] = 0 for every disturbance direction Bdist

(and any nonzero udist[∞]). Then

r>i v = 0 for all v ∈ Rn =⇒ ri = 0.

But a zero row in (I −A)−1 implies rank
(
(I −A)−1

)
≤ n− 1, i.e.

(I −A)−1 is singular.
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Alignment Problem

What Is Possible?

You can achieve e[∞] = 0 for a chosen class of disturbances by
embedding their internal model in the controller.

In other words, we can augment our system with a new state
which can inform the design of a new controller.

But no stable controller can guarantee e[∞] = 0 for every disturbance
direction Bdist.

Instead, design a controller so that ei[∞] = 0 for some states and
some Bdist’s.
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Introducing Integral-Based Control

Countering Steady-State Error

Disturbances cause a non-zero steady-state error. What can we do?
Introduce new state (accumulation of distance error):

q[n] = q[n− 1]−∆T (dd[n]− d[n]).

Full system now has three states:

d[n] = d[n− 1] + ∆T ν θ[n− 1],

θ[n] = θ[n− 1] + ∆T ω[n− 1],

q[n] = q[n− 1]−∆T (dd[n]− d[n]).
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Introducing Integral-Based Control

What is q[n]?

Suppose we use ω[n] = Kp(dd[n]− d[n])−Kθθ[n], and track,

q[n] = q[n− 1]−∆T (dd[n]− d[n]) :
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q[n] accumulates the distance error over time.
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Introducing Integral-Based Control

What is q[n]?

Suppose we use ω[n] = Kp(dd[n]− d[n])−Kθθ[n], and track,

q[n] = q[n− 1]−∆T (dd[n]− d[n]) :
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q[n] accumulates the distance error over time.
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Introducing Integral-Based Control

What is q[n]? With Disturbance.

Suppose we use ω[n] = Kp(dd[n]− d[n])−Kθθ[n], and track,

q[n] = q[n− 1]−∆T (dd[n]− d[n]) :

0 2 4 6 8 10

0

1

d
[n

]

0 2 4 6 8 10

0

2

4

q[
n

]

q[n] accumulates the distance error over time.
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Introducing Integral-Based Control

Adding Integral State

Full system now has three states:

d[n] = d[n− 1] + ∆T ν θ[n− 1],

θ[n] = θ[n− 1] + ∆T ω[n− 1],

q[n] = q[n− 1]−∆T (dd[n]− d[n]).

New controller:

ω[n] = Kp (dd[n]− d[n])−Kθ θ[n]−Ki q[n].

Interpretation: q[n] accumulates (sums) the distance error, so including
−Kiq[n] ensures the controller reacts to long-term offsets and drives
steady-state error to zero.
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Introducing Integral-Based Control

System Equations with Accumulator State

State vector (with accumulator state included):

x[n] =

d[n]
θ[n]
q[n]

 .
System equations:

x[n] =

 1 ∆T ν 0
−∆TKp 1−∆TKθ −∆TKi

∆T 0 1


︸ ︷︷ ︸

A

x[n−1] +

 0
∆TKp

−∆T


︸ ︷︷ ︸

B

dd[n−1].
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Introducing Integral-Based Control

Stability of A?

What are the eigenvalues of A? 1 ∆T ν 0
−∆TKp 1−∆TKθ −∆TKi

∆T 0 1


︸ ︷︷ ︸

A

=

1 0 0
0 1 0
0 0 1

−∆T

 0 ν 0
−Kp −Kθ −Ki

1 0 0


︸ ︷︷ ︸

M

We can use Spectral Mapping Theorem:

evals(A) = 1−∆T evals(M).

How do we pick Kp,Kθ,Ki? Let’s use numerical tools.
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Introducing Integral-Based Control

Computing (I − A)−1

Integral-augmented system matrix:

A =

 1 ∆T ν 0
−∆TKp 1−∆TKθ −∆TKi

∆T 0 1


⇒ I −A = ∆T

 0 −ν 0
Kp Kθ Ki

−1 0 0

 .
We can find a very simple inverse,

(I −A)−1 =
1

∆T


0 0 −1

−1

ν
0 0

Kθ

Ki ν

1

Ki

Kp

Ki

 .
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Introducing Integral-Based Control

Steady-State Checks (Without Disturbance)

Input matrix for constant dd:

(I−A)−1 =
1

∆T


0 0 −1

−1

ν
0 0

Kθ

Ki ν

1

Ki

Kp

Ki

 , B =

 0
∆TKp

−∆T

 , (I−A)−1B =

1
0
0

 .

For any constant desired distance dd[∞],d[∞]
θ[∞]
q[∞]

 =

1
0
0

 dd[∞]
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Introducing Integral-Based Control

Disturbance: Constant Lateral Drift (“Wind”)

Additive offset in d: d[n] = d[n− 1] + ∆Tν θ[n− 1] + ∆T (???)︸ ︷︷ ︸
wind?

.

As a constant input: Bdist =

∆T
0
0

 .
Steady-state:

(I −A)−1Bdist =


0

−1

ν
Kθ

Ki ν

 .
Interpretation: Integral action drives the distance error to zero, but a
constant drift induces a steady heading bias θ[∞] = −1/ν, with
q[∞] = (Kθ/(Ki ν)).
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Introducing Integral-Based Control

Disturbance: Constant Bias in θ (“Cyclone”)

Additive offset in θ: θ[n] = θ[n− 1] + ∆T (ω[n− 1]) + ∆T (???)︸ ︷︷ ︸
cyclone?

.

As a constant input: Bdist =

 0
∆T
0

 .
Steady-state:

(I −A)−1Bdist =


0

0
1

Ki

 .
Interpretation: The integrator ramps to q[∞] = 1/Ki and cancels the
bias; thus d[∞] = θ[∞] = 0 despite the constant angle offset.
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