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Marginal Maglev: Lead Design

In our fourth lab (Marginal Maglev), we designed a lead controller for a magnetic levitation
system. In this post lab exercise, we will implement a double lead controller in simulation.
Assume that the open loop transfer function of the magnetic levitation system is given by

H(s) =
γ(−λE)

(s− λE)(s2 − γay)

and (for ease of grading) please use the following parameter values:

γ = 1900

γay = 1100

λE = −132

Problem One: Start by implementing a PD controller that can stabilize this system. What
values of Kp and Kd work in your simulation?

Following examples in your lab, use Matlab functions to draw bode plots of transfer functions
of H(s), K(s) and H(s)K(s). Report the phase margin from your simulation. In addition,
show the closed loop system step response.



Your plots:



Problem Two: The main issue with a PD controller is that it amplifies high frequency
signals. If the physical system cannot dissipate high frequency disturbances effectively, then
a PD controller may not perform well. Next, we will implement a lead controller. A lead
controller can increase a system’s phase margin without significantly amplifying high fre-
quency signals.
First, let’s implement a lead controller in the form:

Klead(s) = K0

(
sp
sz

)(
s− sz
s− sp

)
This requires 3 parameters: K0, sp, and sz. For this problem, please use

K0 = 2.5 sp = −800 sz = −20

What are the low-frequency and high-frequency gains for this lead controller?

What is the maximum phase gain (and its corresponding frequency) of this lead controller?

On the same bode plot, please show the transfer function ofH(s), Klead(s), andH(s)Klead(s).



What is the phase margin of the open-loop system KleadH(s)? Is this a stable system?

Please show the step response of the system with this lead controller.

Problem Three:While a lead controller can be used to stabilize the maglev system, we
would like to explore ways to improve the system’s phase margin. Let’s try a double-lead
controller:

Kdl =

(√
K0

(
sp
sz

)(
s− sz
s− sp

))2

What are the low-frequency and high-frequency gains of this controller?



Implement this double-lead controller with the same numbers as in Problem 2 and show the
bode plots for the transfer functions H(s), Kdl(s), and H(s)Kdl(s).

What is the new phase margin? Has it improved? Why? What are the pros and cons of this
double lead controller?



Problem Four: Now design a double-lead controller that satisfies the following two con-
straints:

|Knew(s → 0)| = K0 = 2.5 (1)

|Knew(s → ∞)| = 100 (2)

Your double-lead controller should have the form:

Knew = K0
sp1(s− sz1)sp2(s− sz2)

sz1(s− sp1)sz2(s− sp2)

Your goal is to choose the two pairs of poles and zeros so that you can improve the phase
margin without increasing the high frequency controller gain. This design process is itera-
tive. Please show the bode plot of the new system H(s)Knew(s).

What is the new phase margin and what are your values of sz1, sz2, sp1, and sp2?



Problem Five: In this problem we will implement the double-lead controller on a micro-
controller (like the Teensy), following the example from our lab. We need discrete-time
equations to approximate its behavior. Recall the form of the single-lead controller

e(t) → K0

(
sp
sz

)(
s− sz
s− sp

)
→ c(t)

The corresponding differential equation is:

ċ(t)− spc(t) = K0

(
sp
sz

)
(ė(t)− sze(t)) .

We develop a discrete-time difference equation approximation:

c[n]− c[n−1]

∆T
− spc[n−1] = K0

(
sp
sz

)(
e[n]− e[n−1]

∆T
− sze[n−1]

)
By re-arranging the terms, we can find an update equation for c[n] in terms of the previous
controller output c[n−1] and the current and previous error inputs e[n] and e[n−1]:

c[n] = (1+sp∆T )c[n−1] +K0

(
sp
sz

)(
e[n]− (1+sz∆T )e[n−1]

)
Now let’s develop a similar update equation for the output c[n] of a discrete-time, double-lead
controller:

e(t) →
√
K0

(
sp1
sz1

)(
s− sz1
s− sp1

)
g(t)−−→

√
K0

(
sp2
sz2

)(
s− sz2
s− sp2

)
→ c(t)

Here an intermediate signal g(t) is introduced to simplify your expression. In your controller,
you will have access not only to the previous value of the controller output (c[n−1]) and
the current and previous values of the error signal (e[n] and e[n−1]), but also the previous
value of the intermediate signal (g[n−1]). Enter your equations below (you don’t need to
substitute with numerical values for this question).


