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6.3100 Lecture 3 Notes — Spring 2023

Linearity, time invariance, first order DT system with loss, steady-state error
Dennis Freeman and Kevin Chen

Outline:
1. First order DT system with arbitrary driving x[n]: linearity, time invariance, and
superposition
2. Feedforward control
3. Example: 3D-printing with heat dissipation
4. Steady-state error

1. First order DT system with an arbitrary driving function x[n]: linearity, time invariance, and

superposition
In the previous lecture, we introduced first order DT equation:

y[n] = Ay[n— 1] + bx[n —1]

We assumed that the input reference function x[n] is 1 for all n>0, and it is 0 for n<O0. This may
seem a restrictive condition. In real life, the driving function is arbitrary. For instance, consider
we know how to solve the system with the simple driving function on the left, how can we

calculate the solution to a more complex driving function on the right?
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It turns out we can invoke 2 properties of linear first order difference equations: linearity and
time invariance. We state these 2 conditions without proof, but they are intuitive and are easy

to prove.

Linearity:
If the reference input xa[n] leads to the solution ya[n], and the input xs[n] leads to the solution
yb[n], then we have:

Axg[n] + Bxy[n] = Aya[n] + Byy[n]

where A and B are constants, and the symbol “—” means “leads to”. This property can be proved
by direct substitution.
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Time invariance:

‘ If x[n] = y[n], then x[n-no] = y[n-no]. This property can also be proved by direct substitution.
These two conditions lead to the superposition principle. Consider the driving example again. We
can decompose it into the sum of two shifted and scaled inputs. %), 1
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For even more complex inputs, we can treat them as an infinite sum of scaled inputs, and use a
tool called convolution. It is conceptually simple but requires some more mathematics. We will
not cover convolution in this course.

2. Feedforward control
In preparation for lab 1, we are going to quickly introduce a feedforward control example. In this
case, we are not going to use any sensor information for feedback. Consider the 3D-printing

example, the plant equation is:

© Tn[n] = Tm[n — 1]
AT

= yu[n —1]

The feedforward controller is given by:
uln] = K¢fTy[n]
where Kff is a parameter that we choose. Making a substitution, the system equation becomes:

T[] — Tm[n —1]
AT

= nyde[n — 1]

Rearranging the equation, we have:
Tn[n] = Tp[n — 1] + ATyK;fTy[n — 1]

The system natural frequency is 1, which means that it is unstable! The takeaway is that without
any feedback control, the control system is probably not going to perform very well. This concept
is useful, and we will return to this at the end of this lecture.

3. Example: 3D-printing with heat dissipation
We are going to make the 3D-printing example a little bit more realistic, and then study how this

modeling change will cause a non-zero steady-state error.

. The old plant equation is given by:
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Taln] = Tuln — 1] + ATyu[n — 1]

The change of temperature is only dependent on the input. Realistically, air convection can also
cool the printing head. So we can add another term in the equation:

Tu[n] = Tp[n — 1] + ATyu[n — 1] = ATBTy,[n — 1]
Here the parameter f is a constant relating heat loss to the instantaneous temperature Tn[n].
With this system, we can implement the same proportional feedback controller again:
uln] = Ky (Taln] = T [n])
After substitution, the system equation becomes:
T[n] = (1 — YK, AT — ATB) Ty [n — 1] + yATK, Ty[n — 1]

Note that compared to the last lecture, we now have a new term —ATST, [n — 1] that describes
convective cooling. This new term changes our selection of Kp because it influences both stability,
convergence rate, and steady-state error.

Stability:
-1<1A<1
-1<1-yK,AT-ATf <1
2 — BAT -
_— K i S
yAT A
The value of Kp satisfies these limits to guarantee stability.

Convergence:
If we want our system to converge to a steady state value (T, [n] = Ty [n — 1]) as quickly as
possible, then we need to set the natural frequency to 0. Here, we have:

A= (1-yK,AT — ATB) =0
Solving for K, we obtain

1-—AT
k= LoATE
yAT

This analysis gives an optimal Kp if we hope the system can converge quickly.

Steady-state error:
However, having a fast convergence rate may not be our only objective. In this example, let’s
calculate the steady state error. Let’s define the error term as:

e[n] = Ty[n] — Tu[n]

We can rearrange the system equation as:
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Tp[n] = (1 — yK,AT — ATB) Ty [n — 1] + yATKpTa[n — 1]
—e[n] = —(1 — yK,AT — ATB)e[n — 1] — ATBTy [n—1]

As n approach infinity, the equation becomes:

e[w] = Ae[oo] + ATBTy[*]

Solving for the error term, we have:
ATBT4[]
efeo] = ——4—
1-2

Note that e[oo] is the steady-state error. Thisis an interesting result. First, A needs to be between
-1 and 1 to guarantee stability. So as long as B # 0, our control system will have a steady state
error! If having a smaller error is more important to us, then we need to let A = —1. This is an
important takeaway. In many situations, there is no solution that optimizes every aspect of the
control system. We need to consider tradeoffs. Are we prioritizing faster convergence or smaller
steady state error? This is a design choice.

4. Steady-state error
Building on the previous example, can | design a controller that removes the steady-state error?

This requires us to design a new controller. For instance, we can put together a feedforward-and-

proportional controller.
We can set the controller as:
u[n] = KepTa[n] + Ky (Taln] — Tm[n])
Now we have 2 numbers to choose: Kff and Kp. The system equation becomes:
Tpa[n] = (1 — yKpAT — ATB)Ty[n — 1] + yAT(Kp + Kpf)Ta [n—1]
e[n] = (1 — yK,AT — ATB)e[n — 1] + (=vKys + B)ATT[n — 1]
e[n] = de[n — 1] + (—yKsr + B)ATTy[n —1]
Now the steady-state error becomes:
e[oo] = Ae[eo] + (—=¥Krr + B)ATT4[0]

o Corlar T DATT o]

Can we make the steady-state error e[o] equal to 0? Yes! We can set
Kep = Bly

In this new controller design, we can choose K, to optimize the convergence rate, and then
choose Ky to eliminate the steady-state error. In the next few weeks, we are going to introduce
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more complex controllers such as proportional-derivative (PD) and proportional-integral-
derivative (PID) controllers.




