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6.3100 Lecture 4 Notes – Spring 2023 

Experimental characterization of first order systems, and simulation tools 

Dennis Freeman and Kevin Chen 

Outline: 

1. First order system: estimation of system properties 

2. MATLAB tools for analyzing a first order system   

3. Review of complex numbers – interpretation using the complex plane  

 

1. First order system: estimation of system properties  

In the previous lectures, we discussed how to solve first order systems. If I give you the 

mathematical model of a system, then you can implement a proportional controller and find the 

optimal Kp. However, when you design a control system, how do you know the properties of the 

system in the first place? If I give you a robot, how do you figure out key parameters in your 

model? System identification is an area of study in which researchers measure the system 

properties through running simple experiments and observing system response.  

 

We will introduce a very simple technique that is helpful for solving lab 1. First, a first order 

system is given by the equation:  
𝑦[𝑛] = 𝑦[𝑛 − 1] + ∆𝑇(𝛽𝑦[𝑛 − 1] + 𝛾𝑐[𝑛 − 1]) 

Here the parameters 𝛽 and 𝛾 are system properties that we want to measure. We need to design 

a reasonable control input signal 𝑐[𝑛]. Note that our goal is to measure 𝛽  and 𝛾, not stably 

control the system or closely follow a trajectory. Let’s try two different options:  
 

Feedback control:  

𝑢[𝑛] = 𝐾𝑝(𝑦𝑑[𝑛] − 𝑦[𝑛]) 

Given this feedback controller, the system equation becomes:  

𝑦[𝑛] = 𝑦[𝑛 − 1] + ∆𝑇(𝛽𝑦[𝑛 − 1] + 𝛾𝐾𝑝(𝑦
𝑑

[𝑛 − 1] − 𝑦[𝑛 − 1])) 

𝑦[𝑛] = 𝑦[𝑛 − 1] + ∆𝑇(𝛽𝑦[𝑛 − 1] − 𝛾𝐾𝑝𝑦[𝑛 − 1]) + 𝛾∆𝑇𝐾𝑝𝑦
𝑑

[𝑛 − 1] 

𝑦[𝑛] − 𝑦[𝑛 − 1] − ∆𝑇(𝛽𝑦[𝑛 − 1] − 𝛾𝐾𝑝𝑦[𝑛 − 1]) = 𝛾∆𝑇𝐾𝑝𝑦
𝑑

[𝑛 − 1] 

𝑦[𝑛] = 𝑦[𝑛 − 1](1 + ∆𝑇𝛽 − ∆𝑇𝛾𝐾𝑝) + 𝛾∆𝑇𝐾𝑝𝑦
𝑑
[𝑛 − 1] 

Here the natural frequency is given by:  

𝜆 = 1 + ∆𝑇𝛽 − ∆𝑇𝛾𝐾𝑝 

This is a little bit problematic. The natural frequency changes as we change 𝐾𝑝. So it is not easy 

to measure the system 𝛽 and 𝛾. Let’s try another controller.  
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Feedforward control:  

𝑢[𝑛] = 𝐾𝑓𝑓𝑦𝑑[𝑛] 

Given this feedforward controller, the system equation becomes:  

𝑦[𝑛] = 𝑦[𝑛 − 1] + ∆𝑇(𝛽𝑦[𝑛 − 1] + 𝛾𝐾𝑓𝑓𝑦𝑑[𝑛 − 1]) 

𝑦[𝑛] = 𝑦[𝑛 − 1] + ∆𝑇(𝛽𝑦[𝑛 − 1]) + 𝛾∆𝑇𝐾𝑓𝑓𝑦𝑑[𝑛 − 1] 

𝑦[𝑛] − 𝑦[𝑛 − 1] − ∆𝑇(𝛽𝑦[𝑛 − 1]) = 𝛾∆𝑇𝐾𝑓𝑓𝑦𝑑[𝑛 − 1] 

𝑦[𝑛] = 𝑦[𝑛 − 1](1 + ∆𝑇𝛽) + 𝛾∆𝑇𝐾𝑓𝑓𝑦𝑑[𝑛 − 1] 

Now this is much better because the natural frequency is given by:  

𝜆 = 1 + ∆𝑇𝛽 

To measure 𝛽 and 𝛾, we need to derive 2 relationships. A common approach is to look at the 

step response of a system. Here we let 𝑦𝑑[𝑛] = 1 for n>0, and y[n]=0 for n=0. Suppose we run 

this experiment and obtain the following graph: 

 

Graphically, we need to get two equations.  

First, we can calculate 𝜆 by measuring the time y[n] uses to reach half of y[∞]. We have: 

𝜆𝑛∗
= 0.5 

For the plot above, we measure 𝑛∗ = 3. To calculate 𝜆, we can use:  

𝜆 = exp (
1

𝑛∗
log(0.5)) 

We can back-calculate 𝛽: 
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𝛽 =
exp (

1
𝑛∗ log(0.5)) − 1

∆𝑇
= −4.1 

Next, we need to solve for 𝛾. We can solve for 𝛾 using the steady state condition. We measure 

y[∞] = 0.5. For large time, the equation becomes: 

𝑦[∞] = 𝑦[∞](1 + ∆𝑇𝛽) + 𝛾∆𝑇𝐾𝑓𝑓 

We obtain the equation:  

𝛾 = −
𝑦[∞]𝛽

𝐾𝑓𝑓
= 2.1 

You will practice this technique in lab 1.  

2. MATLAB tools for analyzing a first order system 

Most 1st order systems are simple enough that we can solve them manually. However, as we will 

see in the next few weeks, the algebra becomes tedious for higher order system. Numerical tools 

are useful for solving control systems. We are going to use MATLAB in this course. The reason 

that we use MATLAB is that it has very convenient packages, and many physical systems are 

controlled by MATLAB/Simulink.  

The code below generates the system identification plot on page 2.   
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The lines of code that may look puzzling relate to the definition of a transfer function (tf) with a 

numerator and a denominator. We will explain the transform techniques in the next 2 weeks of 

class. For now, it is sufficient to use this function. It comes from “pattern matching”.  

𝑦[𝑛] = 𝑦[𝑛 − 1](1 + ∆𝑇𝛽) + 𝛾∆𝑇𝐾𝑓𝑓𝑦𝑑[𝑛 − 1] 

𝑦[𝑛] − 𝑦[𝑛 − 1](1 + ∆𝑇𝛽) = 𝛾∆𝑇𝐾𝑓𝑓𝑦𝑑[𝑛 − 1] 

The denominator relates to the coefficients in front of y[n] and y[n-1]. Here they are given by : 

𝑑𝑒𝑛 = [1, −∆𝑇𝛽 − 1] 

The numerator relates to the coefficients in front of yd[n] and yd[n-1]. Here they are given by: 

𝑛𝑢𝑚 = [0, ∆𝑇𝛾𝐾𝑓𝑓] 

We can easily modify this code to study proportional feedback control. Under feedback control, 

the system equation is given by:  

𝑦[𝑛] − 𝑦[𝑛 − 1](1 + ∆𝑇𝛽 − ∆𝑇𝛾𝐾𝑝) = 𝛾∆𝑇𝐾𝑝𝑦
𝑑

[𝑛 − 1] 

Now we only need to change the denominator and numerator lines: 

 

We can re-run the simulation and get the following graph: 
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3. Review of complex numbers 

Complex numbers are mathematical tools for us to analyze high order DT problems (later we will 

also use complex numbers to analyze continuous time problems). Here is a quick summary of 

complex numbers. A complex number consists of a real part a and an imaginary part b. It can be 

thought as a tuple of two numbers (a, b), or it can be represented as a magnitude (r) and an angle 

(𝜙)   in the complex plane.  

  

z = a + jb 
z = reiφ 

𝑟 = √𝑎2 + 𝑏2 
𝜙 = tan−1(𝑏/𝑎) 

𝑎 = 𝑟𝑐𝑜𝑠𝜙 
𝑏 = 𝑟𝑠𝑖𝑛𝜙 

In this course, we use j to denote the imaginary number. Note here are two important relations: 

𝑗2 = −1 and  
1

𝑗
=

𝑗

𝑗2 = −𝑗 

We can use the polar form to evaluate the solution and analyze stability. Specifically, we have: 

𝜆𝑛 = (𝑎 + 𝑗𝑏)𝑛 = (𝑟𝑒𝑗𝜙)
𝑛

= 𝑟𝑛𝑒𝑗𝑛𝜙 

The phase 𝑒𝑗𝑛𝜙 has an amplitude of 1, and the term 𝑟𝑛 determines whether the system is stable 

or unstable. Specifically, for the system to converge, we must impose 𝑟 < 1. The key takeaway is 

that for the system to be stable, the amplitude of all natural frequencies must be less than 1.  

Let’s review an example introduced in lecture 2. Consider the step response of a control system 

where the natural frequency varies along the real-axis in the complex plane. Cases 1-7 

correspond to the following time-domain solutions.  

 


