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Overview

To date, we have focused on discrete-time systems.

• they are convenient and appropriate for microprocessor controllers

• DT systems are simpler to analyze than analogous CT systems

But some issues (such as frequency responses) are easier to analyze using

continuous-time methods.

Fortunately, methods and insights from discrete-time design and analysis

are (for the most part) easily translated to continuous time.



Comparison of Discrete-Time and Continuous-Time Systems

+

p delay

x1[n] y1[n]

discrete-time

block diagrams with delays

difference equation

y1[n] = x1[n] + py1[n−1]

+

p

∫
x2(t) y2(t)

continuous-time

block diagrams with integrators

differential equation

dy2(t)
dt

= x2(t) + py2(t)

Determine the homogeneous solutions when y1[0] = 1 and y2(0) = 1.

For what value(s) of p do the homogeneous solutions converge/diverge?



Discrete-Time Homogeneous Solution

Determine the response y1[n] in the following difference equation

y1[n] = x1[n] + py1[n−1]
when x1[n] = 0 for all n and y1[0] = 1.

Since the input is zero, we expect that the output will be a natural frequency

with the following geometric form:

y1[n] = Czn

where C and z are constants. Substituting into the difference equation

Czn = 0 + pCz−1zn

so z = p. We can find C from the initial condition

y1[0] = 1 = Cz0 = C

and the final answer is

y1[n] = pn for n ≥ 0



Continuous-Time Homogeneous Solution

Determine the response y2(t) in the following difference equation

dy2(t)
dt

= x(t) + py(t)

when x2(t) = 0 for all t and y2(0) = 1.

Since the input is zero, we expect that the output will be a natural frequency

with the following exponential form:

y2(t) = Cest

where C and s are constants. Substituting into the difference equation

Csest = 0 + pCest

so s = p. We can find C from the initial condition

y2(0) = 1 = Cest = C

and the final answer is

y2(t) = ept for t ≥ 0



Discrete-Time Convergence

For what values of p does the sequence pn converge as n→∞?

lim
n→∞

pn =?

Express p in polar coordinates:

p = Mejφ

so that

lim
n→∞

pn = lim
n→∞

(
Mejφ

)n
= lim

n→∞
Mnejφn

The CT homogeneous solution converges to 0 if M = |p| < 1.



Continuous-Time Convergence

For what values of p does the function ept converge as t→∞?

lim
t→∞

ept =?

Express p in rectangular coordinates:

p = a+ jb

so that

lim
t→∞

ept = lim
t→∞

e(a+jb)t = lim
t→∞

eatejbt

The DT homogeneous solution converges to 0 if a = Re (p) < 0.



Comparison of Discrete-Time and Continuous-Time Systems

+

p delay

x1[n] y1[n]

discrete-time

block diagrams with delays

difference equation

y1[n] = x1[n] + py1[n−1]

homogeneous solution

y1[n] = pn; n ≥ 0

region of convergence

|p| < 1

+

p

∫
x2(t) y2(t)

continuous-time

block diagrams with integrators

differential equation

dy2(t)
dt

= x2(t) + py2(t)

homogeneous solution

y2(t) = ept t ≥ 0

region of convergence

Re(p) < 0

Many similarities. Some differences.



Comparison of Higher-Order Systems

difference equation differential equation

y1[n] = x1[n] + y1[n−1] + y1[n−2] d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)

system function system function

H1(z) = Y1
X1

H2(s) = Y2
X2

Determine system functions H1(z) and H2(s) for these higher-order systems.



System Functions

Start with the discrete-time system function.

If y1[n] is geometric with the form y1[n] = zn, then right-shifting n by 1
multiplies the signal by z−1 and right-shifting n by 2 multiplies the signal

by z−2: Substitute these relations into the difference equation

y[n] = x[n] + y[n−1] + y[n−2]
to get

Y = X + z−1Y + z−2Y

Solve for the ratio of Y to X:

H1(z) = Y1
X1

= 1
1− z−1 − z−2 = z2

z2 − z − 1



System Functions

We can do the same sort of analysis for the continuous-time system.

If y2(t) is exponential with the form y2(t) = est, then differentiating multi-

plies by s. Substitute this relation into the differential equation

d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)
to get

s2Y2 = X2 + sY2 + Y2

Solve for the ratio of Y2 to X2:

H2(s) = Y2
X2

= 1
s2 − s− 1



System Functions

difference equation differential equation

y1[n] = x1[n] + y1[n−1] + y1[n−2] d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)

system function system function

H1(z) = z2

z2 − z − 1
H2(s) = 1

s2 − s− 1

Both DT and CT system functions are ratios of polynomials,

which can be found from their responses to their respective eigenfunctions:

• zn for DT systems

• est for CT systems



Comparison of Higher-Order Systems

difference equation differential equation

y1[n] = x1[n] + y1[n−1] + y1[n−2] d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)

system function system function

H1(z) = z2

z2 − z − 1
H2(s) = 1

s2 − s− 1

Determine the natural frequencies of these systems and their correspond-

ing time functions (aka fundamental modes).



System Functions

Start with the discrete-time system function.

H1(z) = Y1
X1

= 1
1− z−1 − z−2 = z2

z2 − z − 1
The denominator of the system function is second order and has two roots

z1, z2 = 1
2 ±

√(1
2
)2 + 1 = 1

2(1±
√

5)
which are the two natural frequencies.

The corresponding time waveforms (fundamental modes) are

C1z
n
1

and

C2z
n
2

where C1 and C2 are constants that are determined by initial conditions.



System Functions

We can do the same sort of analysis for the continuous-time system.

H2(s) = Y2
X2

= 1
s2 − s− 1

The denominator of the system function is second order and has two roots

s1, s2 = 1
2 ±

√(1
2
)2 + 1 = 1

2(1±
√

5)
which are the two natural frequencies.

The corresponding time waveforms (fundamental modes) are

C1e
s1t

and

C2e
s2t

where C1 and C2 are constants that are determined by initial conditions.



System Functions

difference equation differential equation

y1[n] = x1[n] + y1[n−1] + y1[n−2] d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)

system function system function

H1(z) = z2

z2 − z − 1
H2(s) = 1

s2 − s− 1

poles poles

z1, z2 = 1
2(1±

√
5) s1, s2 = 1

2(1±
√

5)

homogeneous solutions homogeneous solutions

C1z
n
1 + C2z

n
2 C1e

s1t + C2e
s2t

• poles are the roots of the denominator of the system function

• each pole corresponds to a natural frequency

• homogeneous solution is a sum of contributions from each pole



Complex Poles

Oscillatory responses of both discrete-time and continuous-time systems

result when a pole has a non-zero imaginary part.

Fundamental modes for discrete-time systems have the form

pn =
(
Mejφ

)n
and responses will be monotonic if φ = 0 or alternating if φ = π.

Fundamental modes for continuous-time systems have the form

ept = e(a+jb)t = eate−jbt

and oscillations will occur if b 6= 0.



Check Yourself

Match the system functions on the left with the poles on the right.

a

A:
1

1−R−R2

b

B:
1

1+R−R2

c

C:
1

1−R+R2

d

D:
1

1+R+R2

e

E:
1

1+R2

f

F:
1

1−R2



Check Yourself

Match the system functions on the left with the poles on the right.

a

A:
1

1−R−R2

b

B:
1

1+R−R2

c

C:
1

1−R+R2

d

D:
1

1+R+R2

e

E:
1

1+R2

f

F:
1

1−R2



Complex Poles in DT systems

The fundamental mode associated with a complex pole has both real and

imaginary parts.

Example: A pole at p = 0.9 + j0.3 generates a geometric sequence pn:

n

Re(pn), Im(pn)

But the responses of physical systems are real!

The pole in this example comes from the following system:

y[n] = x[n] + 1.8y[n−1]− 0.9y[n−2]
If x[n] is real for all n, and if the initial conditions are also real, then y[n]
should be real.

What’s going on?



Complex Poles

If x[n] and y[n] represent real-world signals, then the coefficients of the

numerator and denominator of the system function are real.

Y

X
= b0 + b1R+ b2R2 + b3R3 + · · ·

1 + a1R+ a2R2 + a3R3 + · · ·

Factor theorem: a polynomial can be expressed as a product of factors,

with one factor associated with each root of the polynomial.

Fundamental theorem of algebra: a polynomial of order n has n roots.

The roots can have imaginary parts.

Factor denominator:
Y

X
= b0 + b1R+ b2R2 + b3R3 + · · ·

(1− p0R)(1− p1R)(1− p2R)(1− p3R) · · ·
Partial fractions:

Y

X
= C0

1− p0R
+ C1

1− p1R
+ C2

1− p2R
+ · · ·+D0 +D1R+D2R2 + · · ·



Complex Roots

If p is a root of a polynomial with constant real-valued coefficients, then

its complex-conjugate p∗ is also a root.

Proof. Let D(z) represent a polynomial in z with constant real-valued

coefficients.

If p is a root of D(z) then D(p) = 0.

Since all of the coefficients are real-valued,

D(p∗) = (D(p))∗ = 0∗ = 0.
Thus p∗ is also a root.

If we pair the factor associated with p=a+jb with the factor associated

with p∗=a−jb, we get a second-order polynomial with real coefficients:

(z−p)(z−p∗) = (z−a−jb)(z−a+jb) = z2−2az+a2+b2



Complex Poles

A complex-valued pole produces a complex-valued fundamental mode.

pn =
(
Mejφ

)n

1 Re

Im
r = 0.85
Ω = π/4

The magnitude Mn grows geometrically with n, and the angle φn grows

linearly with n.



Complex Poles

The fundamental mode associated with the complex conjugate of p

(p∗)n =
(
Me−jφ

)n
has the same magnitude as that for p and opposite angle.

pn =
(
Mejφ

)n

1 Re

Im
r = 0.85
Ω = ±π/4

The sum of the fundamental modes associated with p and p∗ is real-valued.



Complex Roots

An isolated complex root can only result if the difference equation has one

or more complex-valued coefficients.

Example:
Y

X
= 1

1− (a+jb)R

Corresponding difference equation:

y[n]− (a+jb) y[n−1] = x[n]

A first-order system that represents a physical system can only have real-

valued poles

A second-order or higher-order system that represents a physical system

can have poles with imaginary parts, but such poles occur in complex

conjugate pairs.



Check Yourself

Unit-sample response of a system with poles at z = re±jΩ.

n

Which of the following is/are true?

1. r < 0.5 and Ω ≈ 0.5

2. 0.5 < r < 1 and Ω ≈ 0.5

3. r < 0.5 and Ω ≈ 0.08

4. 0.5 < r < 1 and Ω ≈ 0.08

5. none of the above



Check Yourself

Unit-sample response of a system with poles at z = re±jΩ.

n

Which of the following is/are true? 2

1. r < 0.5 and Ω ≈ 0.5

2. 0.5 < r < 1 and Ω ≈ 0.5

3. r < 0.5 and Ω ≈ 0.08

4. 0.5 < r < 1 and Ω ≈ 0.08

5. none of the above



Summary

Methods and insights from discrete-time design and analysis are (for the

most part) easily translated to continuous time.

Fundamental modes for DT have the form zn.

Fundamental modes for CT have the form est.

DT system functions are rational polynomials in z.

CT system functions are rational polynomials in s.

The poles of both DT and CT systems are the roots of the denominator

of the system function.

DT systems are stable if all of the poles are inside the unit circle.

CT systems are stable if all of the poles are in the left half-plane.


