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From Transients to Frequency Responses

To date, we have described systems by their responses to sudden changes

in their input.

Example: step response

t

y(t)

Today we will look at a different (but mathematically equivalent) charac-

terization based on sinusoids – the frequency response.



Frequency Response Preview

If the input/output relation of a system can be described by a linear differ-

ential equation with constant coefficients, then its response to a sinusoid

will be a sinusoid with

• the same frequency,

• possibly different amplitude, and

• possibly different phase angle.

x(t) = cos(ωt)

t

y(t) = M cos(ωt+ φ)

tsystem

The frequency response is a plot of the magnitude M and angle φ as a

function of ω = 2πf where f is the frequency in Hertz (cycles/second).

• natural way to describe many systems and disturbances

• new way to think about the design of control systems (next week)



Example: Mass and Spring

x(t)

y(t)

mass &
spring
system

x(t) y(t)

t t

At low frequencies, the output is approximately equal to the input.

At middle frequencies, the output can get very large. There is a resonance.

At high frequencies, the output is small.



Frequency Response Calculation

A straightforward way to compute a frequency response is to substitute

x(t) = cos(ωt)
into the system’s differential equation and solve for the response y(t).

But there are a number of much easier methods based on our work with

eigenfunctions and system (transfer) functions.



System Function Approach

Start with the definition of the system function as the eigenvalue associated

with the eigenfunction est.

H(s)est H(s)est

Since s represents an arbitrary complex number, we can subsitute jω for s:

H(s)e jωt H(jω)e jωt

We can similarly substitute −jω for s:

H(s)e−jωt H(−jω)e−jωt

and then use Euler’s formula to determine the response to a cosine:

H(s)cos(ωt) 1
2

(
H(jω)e jωt +H(−jω)e−jωt

)
This expression can be simplified when H(s) is the ratio of polynomials with

real-valued coefficients.



Real-Valued System Functions

If a system can be represented by a linear differential equation with con-

stant, real-valued coefficents:∑
k

ak
dky(t)
dtk

=
∑
k

bk
dkx(t)
dtk

then the system function can be represented as the ratio polynomials in s

whose coefficients are real-valued.

H(s) =
∑

k aks
k∑

k bks
k



System Function Approach

Simplifying the expression for the response to a cosine input.

H(s)cos(ωt) 1
2

(
H(jω)e jωt +H(−jω)e−jωt

)
If x(t) = cos(ωt) then

y(t) = 1
2
(
H(jω)ejωt +H(−jω)e−jωt)

= Re
{
H(jω)ejωt

}
= Re

{
|H(jω)|ej∠H(jω)ejωt

}
= |H(jω)|Re

{
ejωt+j∠H(jω)

}
y(t) = |H(jω)| cos (ωt+ ∠H(jω)) .

H(s)cos(ωt) |H(jω)| cos (ωt+ ∠H(jω))

The frequency response is equal to the magnitude and angle of the system

function H(s) evaluated at s = jω: H(s)
∣∣∣
s=jω



Check Yourself

Compare two methods for determinining the magnitude and angle

of the frequency response of the system described by the following

differential equation:

dy(t)
dt

= dx(t)
dt
− y(t)

Method 1: solve the differential equation

Method 2: find the magnitude and angle of H(jω)



Check Yourself

Find the magnitude and angle of the frequency response of the system

described by the following differential equation:

dy(t)
dt

= dx(t)
dt
− y(t)

by solving the differential equation.

x(t) = cos(ωt)
dx(t)
dt

= −ω sin(ωt)

y(t) = A cos(ωt) +B sin(ωt)
dy(t)
dt

= −Aω sin(ωt) +Bω cos(ωt)

−Aω sin(ωt) +Bω cos(ωt) = −ω sin(ωt)−A cos(ωt)−B sin(ωt)

−Aω = −ω −B and Bω = −A

y(t) = ω2

1 + ω2 cos(ωt)− ω

1 + ω2 sin(ωt)

Now convert to magnitude and angle ... too complicated!



Check Yourself

Use Euler’s formula!
dy(t)
dt

= dx(t)
dt
− y(t)

x(t) = Re
(
ejωt

)
dx(t)
dt

= Re
(
jωejωt

)
y(t) = Re

(
Cejωt

)
dy(t)
dt

= Re
(
jωCejωt

)
jωCejωt = jωejωt − Cejωt

jωC = jω − C

C = jω

1 + jω

|C|2 = ω2

1 + ω2

∠(C) = π

2 − tan−1(ω)



Check Yourself

Evaluate the system function H(s) at x = jω.

dy(t)
dt

= dx(t)
dt
− y(t)

sY = sX − Y

H(s) = Y

X
= s

1 + s

H(jω) = jω

1 + jω

|H(jω)|2 = ω2

1 + ω2

∠(H(jω)) = π

2 − tan−1(ω)



Vector Diagrams

The value of H(s) at a point s=s0 can be determined graphically using

vectorial analysis.

Factor the numerator and denominator of the system function to make

poles and zeros explicit.

H(s0) = K
(s0−z0)(s0−z1)(s0−z2) · · ·
(s0−p0)(s0−p1)(s0−p2) · · ·

z0
z0

s0−z0
s0

s-planes0

Each factor in the numerator/denominator corresponds to a vector from a

zero/pole (here z0) to s0, the point of interest in the s-plane.



Vector Diagrams

The value of H(s) at a point s=s0 can be determined by combining the

contributions of the vectors associated with each of the poles and zeros.

H(s0) = K
(s0−z0)(s0−z1)(s0−z2) · · ·
(s0−p0)(s0−p1)(s0−p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(s0)| = |K| |(s0−z0)||(s0−z1)||(s0−z2)| · · ·
|(s0−p0)||(s0−p1)||(s0−p2)| · · ·

The angle is determined by the sum of the angles.

∠H(s0) = ∠K + ∠(s0−z0) + ∠(s0−z1) + · · · −∠(s0−p0)−∠(s0−p1)− · · ·



Vector Diagrams

The frequency response is equal to H(s) at s=jω.

The value of H(s) at a point s=jω can be determined by combining the

contributions of the vectors associated with each of the poles and zeros.

H(jω) = K
(jω−z0)(jω−z1)(jω−z2) · · ·
(jω−p0)(jω−p1)(jω−p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(jω)| = |K| |(jω−z0)||(jω−z1)||(jω−z2)| · · ·
|(jω−p0)||(jω−p1)||(jω−p2)| · · ·

The angle is determined by the sum of the angles.

∠H(jω) = ∠K + ∠(jω−z0) + ∠(jω−z1) + · · · −∠(jω−p0)−∠(jω−p1)− · · ·



Vector Diagrams
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Vector Diagrams
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Vector Diagrams
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Vector Diagrams
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Check Yourself

Sketch the magnitude and angle of the frequency response of the mass,

spring, and dashpot system.

x(t)

y(t)

F = Ma = Mÿ(t) = K(x(t)− y(t))−Bẏ(t)

Mÿ(t) +Bẏ(t) +Ky(t) = Kx(t)

(s2M + sB +K) Y (s) = KX(s)

H(s) = K

s2M + sB +K



Vector Diagrams
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System Functions

difference equation differential equation

y1[n] = x1[n] + y1[n−1] + y1[n−2] d2y2(t)
dt2

= x2(t) + dy2(t)
dt

+ y2(t)

system function system function

H1(z) = z2

z2 − z − 1
H2(s) = 1

s2 − s− 1

poles poles

z1, z2 = 1
2 ±

√(1
2
)2 + 1 s1, s2 = 1

2 ±
√(1

2
)2 + 1

homogeneous solutions homogeneous solutions

C1z
n
1 + C2z

n
2 C1e

s1t + C2e
s2t

• poles are the roots of the denominator of the system function

• each pole corresponds to a natural frequency

• homogeneous solution is a sum of contributions from each pole



Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

Which of the following (if any) are true?

1. the homogeneous solutions for both systems are oscillatory

2. both systems are stable

3. the homogeneous solutions for both systems converge to 0



Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

The response of the discrete system (pn) is a decaying oscillation.

n

Re(pn1 )

The response of the continuous system (ept is a growing oscillation.

t

Re(ep1t)

The responses of the discrete and continuous systems are different because

the functional dependence on the pole is different.



Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

Which of the following (if any) are true? 1

1. the homogeneous solutions for both systems are oscillatory
√

2. both systems are stable X

3. the homogeneous solutions for both systems converge to 0 X



Check Yourself

Today we studied the frequency response of a CT system.

Our most important result is that the frequency response is easily

determined from the system function.

H(s)cos(ωt) |H(jω)| cos (ωt+ ∠H(jω))

The frequency response is equal to the magnitude and angle of the

system function H(s) evaluated at s = jω: H(s)
∣∣∣
s=jω

What is the analogous statement for a DT system?



Check Yourself

Today we studied the frequency response of a CT system.

Our most important result is that the frequency response is easily deter-

mined from the system function.

Hct(s)cos(ωt) |Hct(jω)| cos (ωt+ ∠Hct(jω))

The frequency response is equal to the magnitude and angle of the system

function Hct(s) evaluated at s = jω: Hct(s)
∣∣∣
s=jω

For DT systems

Hdt(z)cos(Ωn) |Hdt(ejΩ)| cos (Ωn+ ∠Hdt(ejΩ)

The frequency response is equal to the magnitude and angle of the system

function Hdt(s) evaluated at z = ejΩ: Hdt(z)
∣∣∣
z=ejΩ



Check Yourself

eigenfunctions

mode associated with pole

magnitude and angle

zn(
1
2 + j

1
2

)n
(√

2
2

)n
ejπn/4

est

e

(1
2 +j 1

2
)
t

e
1
2 tej

1
2 t



Summary

Today we developed the idea of a frequency response as an alternative way

to describe the behavior of a system.

Next week we will see that the frequency response is a natural way to

describe many systems and disturbances.

Frequency responses will also provide a new way to think about the design

of control systems.


