6.3100: Dynamic System Modeling and Control Design

Frequency Response

March 8, 2023

From Transients to Frequency Responses

To date, we have described systems by their responses to sudden changes in their input.

Example: step response

Today we will look at a different (but mathematically equivalent) characterization based on sinusoids $-$ the frequency response.

Frequency Response Preview

If the input/output relation of a system can be described by a linear differential equation with constant coefficients, then its response to a sinusoid will be a sinusoid with

- the same frequency,
- possibly different amplitude, and
- possibly different phase angle.

The frequency response is a plot of the magnitude *M* and angle *φ* as a function of $\omega = 2\pi f$ where f is the frequency in Hertz (cycles/second).

- natural way to describe many systems and disturbances
- new way to think about the design of control systems (next week)

Example: Mass and Spring

At low frequencies, the output is approximately equal to the input. At middle frequencies, the output can get very large. There is a resonance. At high frequencies, the output is small.

Frequency Response Calculation

A straightforward way to compute a frequency response is to substitute

 $x(t) = \cos(\omega t)$

into the system's differential equation and solve for the response $y(t)$.

But there are a number of much easier methods based on our work with eigenfunctions and system (transfer) functions.

System Function Approach

Start with the definition of the system function as the eigenvalue associated with the eigenfunction e^{st} .

$$
e^{st} \longrightarrow H(s) \longrightarrow H(s)e^{st}
$$

Since *s* represents an arbitrary complex number, we can subsitute *jω* for *s*:

$$
e^{j\omega t} \longrightarrow H(s) \longrightarrow H(j\omega)e^{j\omega t}
$$

We can similarly substitute −*jω* for *s*:

$$
e^{-j\omega t} \longrightarrow H(s) \longrightarrow H(-j\omega)e^{-j\omega t}
$$

and then use Euler's formula to determine the response to a cosine:

$$
\cos(\omega t) \longrightarrow H(s) \longrightarrow \frac{1}{2} \Big(H(j\omega) e^{j\omega t} + H(-j\omega) e^{-j\omega t} \Big)
$$

This expression can be simplified when *H*(*s*) is the ratio of polynomials with real-valued coefficients.

Real-Valued System Functions

If a system can be represented by a linear differential equation with constant, real-valued coefficents:

$$
\sum_{k} a_k \frac{d^k y(t)}{dt^k} = \sum_{k} b_k \frac{d^k x(t)}{dt^k}
$$

then the system function can be represented as the ratio polynomials in *s* whose coefficients are real-valued.

$$
H(s) = \frac{\sum_{k} a_{k} s^{k}}{\sum_{k} b_{k} s^{k}}
$$

System Function Approach

Simplifying the expression for the response to a cosine input.

$$
\cos(\omega t) \longrightarrow H(s) \longrightarrow \frac{1}{2} \Big(H(j\omega) e^{j\omega t} + H(-j\omega) e^{-j\omega t} \Big)
$$

If
$$
x(t) = cos(\omega t)
$$
 then
\n
$$
y(t) = \frac{1}{2} \left(H(j\omega)e^{j\omega t} + H(-j\omega)e^{-j\omega t} \right)
$$
\n
$$
= \text{Re} \left\{ H(j\omega)e^{j\omega t} \right\}
$$
\n
$$
= \text{Re} \left\{ |H(j\omega)|e^{j\angle H(j\omega)}e^{j\omega t} \right\}
$$
\n
$$
= |H(j\omega)|\text{Re} \left\{ e^{j\omega t + j\angle H(j\omega)} \right\}
$$
\n
$$
y(t) = |H(j\omega)|\cos(\omega t + \angle H(j\omega)).
$$
\n
$$
\cos(\omega t) \longrightarrow |H(s)| \longrightarrow |H(j\omega)|\cos(\omega t + \angle H(j\omega))
$$

The frequency response is equal to the **magnitude and angle** of the system function $H(s)$ evaluated at $s = j\omega$: $H(s)$ $\overline{}$ $\overline{}$ $\overline{}$ *s*=*jω*

Compare two methods for determinining the magnitude and angle of the frequency response of the system described by the following differential equation:

$$
\frac{dy(t)}{dt} = \frac{dx(t)}{dt} - y(t)
$$

Method 1: solve the differential equation

Method 2: find the magnitude and angle of $H(j\omega)$

Find the magnitude and angle of the frequency response of the system described by the following differential equation:

$$
\frac{dy(t)}{dt} = \frac{dx(t)}{dt} - y(t)
$$

by solving the differential equation.

$$
x(t) = \cos(\omega t)
$$

\n
$$
\frac{dx(t)}{dt} = -\omega \sin(\omega t)
$$

\n
$$
y(t) = A \cos(\omega t) + B \sin(\omega t)
$$

\n
$$
\frac{dy(t)}{dt} = -A\omega \sin(\omega t) + B\omega \cos(\omega t)
$$

\n
$$
-A\omega \sin(\omega t) + B\omega \cos(\omega t) = -\omega \sin(\omega t) - A \cos(\omega t) - B \sin(\omega t)
$$

\n
$$
-A\omega = -\omega - B \text{ and } B\omega = -A
$$

\n
$$
y(t) = \frac{\omega^2}{1 + \omega^2} \cos(\omega t) - \frac{\omega}{1 + \omega^2} \sin(\omega t)
$$

Now convert to magnitude and angle ... too complicated!

Use Euler's formula!

 $\frac{dy(t)}{dt} = \frac{dx(t)}{dt} - y(t)$ $x(t) = \text{Re}(e^{j\omega t})$ $\frac{dx(t)}{dt}$ = Re (*jωe^{jωt}*) $y(t) = \text{Re}(Ce^{j\omega t})$ $\frac{dy(t)}{dt}$ = Re (*jωCe^{<i>jωt*})</sub> $i\omega Ce^{j\omega t} = i\omega e^{j\omega t} - Ce^{j\omega t}$ $i\omega C = i\omega - C$ $C = \frac{j\omega}{\omega}$ $1 + j\omega$ $|C|^2 = \frac{\omega^2}{1+\omega^2}$ $1 + \omega^2$ \angle (*C*) = $\frac{\pi}{2} - \tan^{-1}(\omega)$

Evaluate the system function $H(s)$ at $x = j\omega$.

$$
\frac{dy(t)}{dt} = \frac{dx(t)}{dt} - y(t)
$$

\n
$$
sY = sX - Y
$$

\n
$$
H(s) = \frac{Y}{X} = \frac{s}{1+s}
$$

\n
$$
H(j\omega) = \frac{j\omega}{1+j\omega}
$$

\n
$$
|H(j\omega)|^2 = \frac{\omega^2}{1+\omega^2}
$$

\n
$$
\angle (H(j\omega)) = \frac{\pi}{2} - \tan^{-1}(\omega)
$$

The value of $H(s)$ at a point $s=s₀$ can be determined graphically using vectorial analysis.

Factor the numerator and denominator of the system function to make poles and zeros explicit.

$$
H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}
$$

Each factor in the numerator/denominator corresponds to a vector from a zero/pole (here z_0) to s_0 , the point of interest in the *s*-plane.

The value of $H(s)$ at a point $s=s₀$ can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$
H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}
$$

The magnitude is determined by the product of the magnitudes. $|H(s_0)| = |K| \frac{|(s_0 - z_0)||(s_0 - z_1)||(s_0 - z_2)| \cdots}{|(s_0 - z_1)||(s_0 - z_1)||(s_0 - z_2)|}$ |(*s*0−*p*0)||(*s*0−*p*1)||(*s*0−*p*2)| · · ·

The angle is determined by the sum of the angles.

$$
\angle H(s_0) = \angle K + \angle (s_0 - z_0) + \angle (s_0 - z_1) + \cdots - \angle (s_0 - p_0) - \angle (s_0 - p_1) - \cdots
$$

The frequency response is equal to $H(s)$ at $s=j\omega$.

The value of $H(s)$ at a point $s=j\omega$ can be determined by combining the contributions of the vectors associated with each of the poles and zeros.

$$
H(j\omega) = K \frac{(j\omega - z_0)(j\omega - z_1)(j\omega - z_2) \cdots}{(j\omega - p_0)(j\omega - p_1)(j\omega - p_2) \cdots}
$$

The magnitude is determined by the product of the magnitudes.

$$
|H(j\omega)| = |K| \frac{|(j\omega - z_0)||(j\omega - z_1)||(j\omega - z_2)| \cdots}{|(j\omega - p_0)||(j\omega - p_1)||(j\omega - p_2)| \cdots}
$$

The angle is determined by the sum of the angles.

$$
\angle H(j\omega) = \angle K + \angle(j\omega - z_0) + \angle(j\omega - z_1) + \cdots - \angle(j\omega - p_0) - \angle(j\omega - p_1) - \cdots
$$

Sketch the magnitude and angle of the frequency response of the mass, spring, and dashpot system.

$$
\sum_{t=1}^{\infty} x(t)
$$

$$
F = Ma = M\ddot{y}(t) = K(x(t) - y(t)) - B\dot{y}(t)
$$

\n
$$
M\ddot{y}(t) + B\dot{y}(t) + Ky(t) = Kx(t)
$$

\n
$$
(s^2M + sB + K) Y(s) = KX(s)
$$

\n
$$
H(s) = \frac{K}{s^2M + sB + K}
$$

$$
y_1[n] = x_1[n] + y_1[n-1] + y_1[n-2] \qquad \qquad \underline{d}
$$

$$
H_1(z) = \frac{z^2}{z^2 - z - 1}
$$

$H_2(s) = \frac{1}{s^2 - s - 1}$

$s_1, s_2 = \frac{1}{2} \pm \sqrt{(\frac{1}{2})^2 + 1}$ $(\frac{1}{2})^2+1$

homogeneous solutions homogeneous solutions

- $C_1 z_1^n + C_2 z_2^n$ C_1e C_1 $S_1 t + C_2 e^{s_2 t}$
- **poles** are the roots of the denominator of the system function
- each pole corresponds to a natural frequency
- homogeneous solution is a sum of contributions from each pole

difference equation differential equation

$$
\frac{d^2y_2(t)}{dt^2} = x_2(t) + \frac{dy_2(t)}{dt} + y_2(t)
$$

system function system function

- 2. both systems are stable
- 3. the homogeneous solutions for both systems converge to 0

Compare two systems that each have poles as $\frac{1+j}{2}$ and $\frac{1-j}{2}$:

$$
H(z) = \frac{1}{z^2 - z - \frac{1}{2}} \quad \text{and} \quad H(s) = \frac{1}{s^2 - s - \frac{1}{2}}
$$

The response of the discrete system (p^n) is a decaying oscillation.

$$
\begin{matrix} \text{Re}(p_1^n) \\ \text{Re}(p_2^n) \\ \text{Re}(p_3) \end{matrix}
$$

The response of the continuous system $(e^{pt}$ is a growing oscillation.

The responses of the discrete and continuous systems are different because the functional dependence on the pole is different.

Today we studied the **frequency response** of a CT system.

Our most important result is that the frequency response is easily determined from the system function.

$$
\cos(\omega t) \longrightarrow H(s) \longrightarrow |H(j\omega)| \cos(\omega t + \angle H(j\omega))
$$

The frequency response is equal to the **magnitude and angle** of the system function $H(s)$ evaluated at $s = j\omega$: $H(s)$ *s*=*jω*

What is the analogous statement for a DT system?

Today we studied the **frequency response** of a CT system.

Our most important result is that the frequency response is easily determined from the system function.

$$
\cos(\omega t) \longrightarrow H_{ct}(s) \longrightarrow |H_{ct}(j\omega)| \cos(\omega t + \angle H_{ct}(j\omega))
$$

The frequency response is equal to the **magnitude and angle** of the system $\text{function} \left. H_{ct}(s) \text{ evaluated at } s=j\omega \colon \left. H_{ct}(s) \right|_{s=j\omega}$

For DT systems

$$
\cos(\Omega n) \longrightarrow H_{dt}(z) \longrightarrow |H_{dt}(e^{j\Omega})| \cos(\Omega n + \angle H_{dt}(e^{j\Omega}))
$$

The frequency response is equal to the **magnitude and angle** of the system function $H_{dt}(s)$ evaluated at $z = e^{j\Omega}$: $H_{dt}(z)\Big|_{z=e^{j\Omega}}$

Summary

Today we developed the idea of a frequency response as an alternative way to describe the behavior of a system.

Next week we will see that the frequency response is a natural way to describe many systems and disturbances.

Frequency responses will also provide a new way to think about the design of control systems.