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Controller Design: Big Picture in Review

Goal: Given a hardware system H(s) (the plant), design a controller K(s)
to achieve some set of performance goals.

+ K(s) H(s)
−

X Y = G(s)X

The goals may be specified in the time domain

t

y(t)

steady-state
convergence
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Controller Design: Model-Based Approach

Measure → Model → Optimize → Repeat

plant

(hardware)
model



Controller Design: Frequency Response Approach

Design a controller based solely on the frequency response of the plant.

+ K(s) H(s)
−

X Y = G(s)X
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Controller Design: Frequency Response Approach

Is it possible to characterize performance using just frequency response?

+ K(s) H(s)
−

X Y = G(s)X
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Controller Design: Frequency Response Approach

Design a controller based solely on the frequency response of the plant.

+ Kp H(s)
−

X Y

Q: Under what conditions will the closed-loop system be stable/unstable?

A: Stable if all closed-loop poles are in the left half plane.

Unstable if any closed-loop pole is in the right half plane.

Oscillatory if the right-most pole is on the jω axis.

Can we infer stability from the open-loop frequency response of the plant?



Controller Design: Frequency Response Approach

Marginal stability occurs when there is a closed-loop pole on the jω axis.

+ Kp H(s)
−

X Y

A pole is a zero of the denominator of the (closed-loop) system function:

G(s) = K
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

If there is a pole at jω0, then |G(jω0)| → ∞.

From Black’s equation,

G(jω0) = KpH(jω0)
1 +KpH(jω0)

|G(jω0)| → ∞ if KpH(jω0) = −1:

•
∣∣∣KpH(jω0)

∣∣∣ = 1 and

• ∠(KpH(jω0) = −π (±k2π).

Stability of the closed-loop system can be determined directly from H(jω).



Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 2
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 5
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 10
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 20
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 30
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 32
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 33
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 2
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 5
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 10
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 20

gain margin
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 30

gain margin
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 32

gain margin
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where ∠(H(jω0) is −π. The system will be

stable if the magnitude of H(jω0) is less than 1 and unstable otherwise.

Kp = 33

gain margin
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 1
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 2
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 5
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 10
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 20
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 30
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 32
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Determining Stability from Open-Loop Frequency Response

Let ω0 represent the frequency where |H(jω0)| = 1. The system will be

stable if the angle of H(jω0) is greater than −π and unstable otherwise.

Kp = 33
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.
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Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using

a compensator as shown below.

+ Kp L(s) H(s)
−

X Y

We can use a lead compensator to increase the phase margin.
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Lead Compensation

A lead compensator has no effect on the magnitude or phase at low fre-

quencies.

L(s) =
(p
z
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Lead Compensation

A lead compensator can significantly increase phase margin (which is good).

Unfortunately, it also reduces the gain margin a bit (which is not so good).

L(s) =
(p
z

) (
s+ z

s+ p
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When adjusted appropriately, the increase in phase margin can more than

compensate for the slight loss of gain margin.



Improving Performance with Lead Compensation

Using a lead compensator with z = 20 and p = 200 has a very small effect.

Kp = 20
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

Kp = 20
z = 10; p = 100
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

Kp = 20
z = 5; p = 50
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Improving Performance with Lead Compensation

Convergence is dramatically improved when z = 2 and p = 20.

Kp = 20
z = 2; p = 20
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Improving Performance with Lead Compensation

Convergence for z = 1 not as good as z = 2 – now loosing gain margin.

Kp = 20
z = 1; p = 10
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.5.

Kp = 20
z = 0.5; p = 5
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.4.

Kp = 20
z = 0.4; p = 4
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.35.

Kp = 20
z = 0.35; p = 3.5
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Improving Performance with Lead Compensation

The system is unstable when z = 0.34.

Kp = 20
z = 0.34; p = 3.4
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Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let ω0 represent the frequency at which the open-loop

phase is −π. The closed loop system will be stable if the magnitude of the

open-loop system at ω0 is less than 1.

Useful metrics for characterizing relative stability:

• gain margin: ratio of the maximum stable gain to the current gain

• phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin

(while also decreasing gain margin slightly).


