
6.3100: Dynamic System Modeling and Control Design

Controlling a System with an Observer

April 26, 2023



Controlling a System with an Observer

Today we will introduce a new method of control based on observers.

To see how this new method builds on previous ideas, let’s consider all of

these methods in the context of a particular problem.



Two-Spring System

The plant consists of two springs and two masses. The goal is to move

the input u(t) = x0(t) so as to position the bottom mass y(t) = x2(t) at

some desired location yd(t).

x0(t)

x1(t)

x2(t)



Classical Control

A classical controller for this problem has the following form.

+ K(s)
−

two-spring
system

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

To solve this classical control problem, me must

• find the equations of motion for the plant (the two-spring system) and

• express those equations in terms of transfer function.



Two-Spring System

Equations of motion.()

x0(t)

x1(t)

x2(t)

fm1 = mẍ1(t) = k
(

x0(t) − x1(t)
)

− k
(

x1(t) − x2(t)
)

− bẋ1(t) − mg

fm2 = mẍ2(t) = k
(

x1(t) − x2(t)
)

− bẋ2(t) − mg

Outputs x1(t) and x2(t) result from two separable inputs: gravity mg, which

generates constant offsets, and x0(t), which determines the dynamics.



Two-Spring System

Transfer function.

x0(t)

x1(t)

x2(t)

H(s) = X2(s)
X0(s) = k2

(s2m + sb + 2k)(s2m + sb + k) − k2



Classical Control

A proportional controller has the following form.

+ Kp H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

The feedback system is stable for only a small range of Kp: Kp<2.5

Step responses:

t

y(t)

0 1 2 3 4 5 6 7

Kp = 1

t

y(t)

0 1 2 3 4 5 6 7

Kp = 1.5

t

y(t)

0 1 2 3 4 5 6 7

Kp = 2

Slow convergence and large oscillatory overshoots.

Why such poor behavior?



Classical Control

Root locus.

Re(s)

Im(s)



Classical Control

Proportional plus derivative performance is similar to that for proportional.

+ Kp+sKd H(s)
−

yd(t)
e(t) u(t)=x0(t)

y(t)=x2(t)

Step responses:

t

y(t)

0 1 2 3 4 5 6 7

Proportional controller

t

y(t)

0 1 2 3 4 5 6 7

Proportional plus derivative



Classical Control

Root locus.

Re(s)

Im(s)



State-Space Control

State-space control is much better.

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

t

y(t)

0 1 2 3 4 5 6 7

Proportional controller

t

y(t)

0 1 2 3 4 5 6 7

Proportional plus derivative

t

y(t)

0 1 2 3 4 5 6 7

State-space controller

What is it about state-space control that allows better performance?



Two-Spring System

The state-space approach uses information from x2(t) and x1(t).

The combination of x1(t) and x2(t) is much more powerful than x2(t) alone.

x0(t)

x1(t)

x2(t)



Beyond State-Space Control

However, to feed back information about x1(t), we must measure x1(t).

What if it’s not possible to measure x1(t).

Idea: Could we simulate the unmeasured states?



Observers

An observer is a simulation of the plant that is used to provide information

about unmeasured states. This simulation will be part of the controller!

+B

∫
C

A
plant

+B

∫
C

A

y(t)
x(t)ẋ(t)

u(t)

+B

∫
C

A
simulation

+B

∫
C

A

ŷ(t)
x̂(t)˙̂x(t)



Observers

We can build state-space controllers for both the plant and the simulation.

If our model of the plant (A, B, C) is perfect, then x̂(t)=x(t) and ŷ(t)=y(t).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

Recall the problem with designing a state-space controller for the two-

springs system: the plant did not provide outputs for all of the states x(t).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

If our model of the plant (A, B, C) is perfect, then x̂(t) = x(t) and we can

replace Kx(t) with Kx̂(t). This substitution also makes u(t) = û(t).

+ +Kr B

∫
C

A

K

plant

+ +Kr B

∫
C

A

K

−

Kx̂(t)

yd(t) y(t)
x(t)ẋ(t)u(t)

+ +Kr B

∫
C

A

K

+ +Kr B

∫
C

A

K

−
ŷ(t)

x̂(t)˙̂x(t)û(t)



Observers

The resulting structure provides feedback from all simulated states x̂(t).

But there is a problem. What’s wrong with this scheme?

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)



Observers

The resulting structure provides feedback from all simulated states x̂(t).

Unfortunately even small differences between the plant and simulation can

lead to large differences between x(t) and x̂(t).

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t) y(t)

x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)



Observers

Fortunately, we can use feedback to correct simulation errors!

Calculate the difference between y(t) and ŷ(t).

Then use that signal (times L) to correct ˙̂x(t).

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Plant dynamics:

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Plant dynamics:

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Plant dynamics:

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Simulation dynamics:

˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t) − ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Simulation dynamics:

˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t) − ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Simulation dynamics:

˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t) − ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Simulation dynamics:

˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t) − ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Plant dynamics: ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
Simulation dynamics: ˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L(y(t) − ŷ(t))

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Observers

Dynamics:

ẋ(t) = Ax(t) −BKx̂(t) +BKryd(t)
˙̂x(t) = Ax̂(t) −BKx̂(t) +BKryd(t) + L

(
y(t) − ŷ(t)

)
Define e(t) to be the difference between the plant and simulation states:

e(t) = x(t) − x̂(t)
Subtract ˙̂x(t) from ẋ(t) to find the derivative of e(t):

ė(t) = Ae(t) − L

(
y(t) − ŷ(t)

)
= Ae(t) − LCe(t)

Append the ẋ(t) and ė(t) to make a new combined state vector:[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

Notice that the resulting matrix equation has the same form as the original

state evolution equation:

ẋ(t) = Ax(t) +Bu(t)
where A,B, and x(t) have been extended to include error terms.



Observers

Combined dynamics: state + observer.[
ẋ(t)
ė(t)

]
=
[
A−BK BK

0 A−LC

] [
x(t)
e(t)

]
+
[
B

0

]
Kryd(t)

Because the evolution matrix has a Block Upper Triangular form, its de-

terminant (and therefore the corresponding poles) are the union of those

of A−BK and those of A−LC.

det

([
M11 M12
0 M22

])
= det(M11) × det(M22)

The independence of these eigenvalues allows us to independently choose

the poles of A−BK and A−LC.

This allows us to pick an L to give fast decay of observer state errors (going

from x(t) to x̂(t)) relative to tracking errors (going from yd(t) to y(t)).



Observers

Since e(t) = x(t)−x̂(t), we can formulate the combined dynamics of the

plant and observer in terms of a state vector

[
x(t)
x̂(t)

]
instead of

[
x(t)
e(t)

]
:

These new equations are then as follows:[
ẋ(t)
˙̂x(t)

]
=
[
A −BK
LC A−LC−BK

] [
x(t)
x̂(t)

]
+
[
B

B

]
Kryd(t)

y(t) = [C 0]
[
x(t)
x̂(t)

]



Choosing L

How can we choose L to make the simulated states x̂(t) converge to x(t)?

+ +Kr B

∫
C

A
plant

+ +Kr B

∫
C

A

−
yd(t)

y(t)x(t)ẋ(t)u(t)

+B

∫
C

A

K

+B

∫
C

A

K

ŷ(t)
x̂(t)˙̂x(t)

+L
−



Choosing L

How can we choose L to make the simulated states x̂(t) converge to x(t)?

In the normal state-space model, we choose the control vector K based on

the eigenvalues of plant dynamics:

sX(s)= AX(s)−BKX(s)+BKrYd

Choose K to optimize properties of the eigenvalues of A-BK.

For the observer, we similarly choose the feedback vector L based on the

eigenvalues of the error dynamics:

sE(s)= AE(s)−LCE(s)
Choose L to optimize properties of the eigenvalues of A-LC.

The K and L problems have a similar form – but they are not identical. The

form can be made identical by transposition, i.e., optimize the eigenvalues

of the transpose AT −CT
L

T (which are identical to those of A-LC).



Choosing L

Since optimizing K and L can be cast into problems with the same form,

the optimizations can be solved using the same methods.

K = place(A,B,[poles])
L = place(A.’,C.’,[poles]).’

or

K = lqr(A,B,Q,R)
L = lqr(A.’,C.’,Q,R).’



Summary

Today we formulated a new approach to control based on observers.

• An observer is a simulation of the plant that is part of the controller.

• The biggest challenge in designing an observer is keeping its state up-

to-date with that of the plant.

• We can feedback the difference between the measured and simulated

outputs to correct the simulated states.


