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Controlling a System with an Observer
Today we will introduce a new method of control based on observers.

To see how this new method builds on previous ideas, let's consider all of
these methods in the context of a particular problem.



Two-Spring System

The plant consists of two springs and two masses. The goal is to move
the input u(t) = x0(t) so as to position the bottom mass y(t) = z5(t) at
some desired location y,(t).




Classical Control

A classical controller for this problem has the following form.
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To solve this classical control problem, me must
e find the equations of motion for the plant (the two-spring system) and

e express those equations in terms of transfer function.

> y(t)=w2(t)



Two-Spring System

Equations of motion.
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Outputs x;(t) and x2(t) result from two separable inputs: gravity mg, which
generates constant offsets, and xy(t), which determines the dynamics.



Two-Spring System

Transfer function.

Xo(s) k2

Xo(s)  (s2m + sb+ 2k)(s2m + sb+ k) — k2



Classical Control

A proportional controller has the following form.
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The feedback system is stable for only a small range of K,,: K,<2.5

Step responses:
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Slow convergence and large oscillatory overshoots.
Why such poor behavior?




Classical Control

Root locus.
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Classical Control

Proportional plus derivative performance is similar to that for proportional.
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Step responses:
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> y(t)=w2(t)

Proportional plus derivative
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Classical Control

Root locus.
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State-Space Control

State-space control is much better.
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What is it about state-space control that allows better performance?



Two-Spring System

The state-space approach uses information from z2(t) and z1(t).
The combination of z1(t) and z2(t) is much more powerful than zs(t) alone.




Beyond State-Space Control

However, to feed back information about z;(t), we must measure x;(t).
What if it's not possible to measure x;(t).

Idea: Could we simulate the unmeasured states?



Observers

An observer is a simulation of the plant that is used to provide information
about unmeasured states. This simulation will be part of the controller!
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Observers

We can build state-space controllers for both the plant and the simulation.
If our model of the plant (A, B, C) is perfect, then x(t)=x(t) and y(t)=y(t).
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Observers

Recall the problem with designing a state-space controller for the two-
springs system: the plant did not provide outputs for all of the states x(t).
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Observers

If our model of the plant (A, B, C) is perfect, then x(t)

= x(t) and we can
replace Kx(t) with Kx(¢). This substitution also makes u(t) =

u(t).
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Observers

The resulting structure provides feedback from all simulated states X(¢).
But there is a problem. What's wrong with this scheme?
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Observers

The resulting structure provides feedback from all simulated states X(¢).
Unfortunately even small differences between the plant and simulation can
lead to large differences between x(t) and X(t).
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Observers

Fortunately, we can use feedback to correct simulation errors!
Calculate the difference between y(t) and 37( )
Then use that signal (times L) to correct x(¢
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Observers

Plant dynamics:
x(t) = Ax(t) — BKX(t) + BK,yq4(t)
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Observers

Plant dynamics:
x(t) = Ax(t) — BKx(t) + BK,yq4(t)
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Observers

Plant dynamics:
x(t) = Ax(t) — BKx(t) + BK,y4(t)
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Observers

Simulation dynamics:

X(t) = AX(t) —

BKX(t) + BK,ya(t) + L(y(t) — y(t))
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Observers

Simulation dynamics:

X(t) = AX(t) —

BKx(1) + BKya(t) + L(y(t) — y(t))
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Observers

Simulation dynamics:

X(t) = AX(t) —

BKx(t) + BE,ya(t) + L(y(t) — 5(¢))
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Observers

Simulation dynamics:

X(t) = AX(t) —

BKX(t) + BE,ya(t) + L(y(t) — 5(¢))

ya(t) —>

Ky

ol

4@4—

[

Y,



Observers

Plant dynamics: x(t) = Ax(t) — BKx(t) + BK,yq4(t)
Simulation dynamics: x(t) = AX(t) — BKxX(t) + BK,y4(t) + L(y(t) — y(t))
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Observers
Dynamics:

x(t) = Ax(
x(t) = AX(
Define e(t) to
e(t) = x(t) — x()
Subtract X(t) from x(t) to find the derivative of e(t):
Ae(t) -

e(t) =

) — BKx(t) + BK,y4(t)
R(t) — BKR(1) + BE,ya(t) + L (y(t) - 511))
be

the difference between the plant and simulation states:

L(y(t) = (1)) = Ae(t) — LCe(t)

Append the x(¢) and é(t) to make a new combined state vector:
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Notice that the resulting matrix equation has the same form as the original
state evolution equation:
x(t) = Ax(t) + Bu(t)

where A, B, and x(¢) have been extended to include error terms.



Observers
Combined dynamics: state + observer.

a0 = [0 W] [S] (R e

Because the evolution matrix has a Block Upper Triangular form, its de-
terminant (and therefore the corresponding poles) are the union of those
of A—BK and those of A—LC.

det Mll M12 = det(Mll) X det(Mzz)
0 Ma22

The independence of these eigenvalues allows us to independently choose
the poles of A—BK and A—LC.

This allows us to pick an L to give fast decay of observer state errors (going
from x(t) to X(t)) relative to tracking errors (going from yu(t) to y(t)).



Observers
Since e(t) = x(t)—X(t), we can formulate the combined dynamics of the
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plant and observer in terms of a state vector instead of e(t) :
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These new equations are then as follows:
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Choosing L

How can we choose L to make the simulated states X(¢) converge to x(¢)7
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Choosing L

How can we choose L to make the simulated states X(¢) converge to x(¢)7

In the normal state-space model, we choose the control vector K based on
the eigenvalues of plant dynamics:

sX(s)= AX(s)-BKX(s)+BKrYy

Choose K to optimize properties of the eigenvalues of A-BK.

For the observer, we similarly choose the feedback vector L based on the
eigenvalues of the error dynamics:

sE(s)= AE(s)—LCE(s)
Choose L to optimize properties of the eigenvalues of A-LC.
The K and L problems have a similar form — but they are not identical. The

form can be made identical by transposition, i.e., optimize the eigenvalues
of the transpose AT—CTL” (which are identical to those of A-LC).



Choosing L

Since optimizing K and L can be cast into problems with the same form,
the optimizations can be solved using the same methods.

K = place(A,B, [poles])

L = place(A.’,C.’, [poles]).’
or

K = 1qr(4,B,Q,R)

L = 1qr(A.’,C.7,Q,R) .’



Summary

Today we formulated a new approach to control based on observers.
e An observer is a simulation of the plant that is part of the controller.

e The biggest challenge in designing an observer is keeping its state up-
to-date with that of the plant.

e We can feedback the difference between the measured and simulated
outputs to correct the simulated states.



