6.3100: Dynamic System Modeling and Control Design

Controlling a System with an Observer

April 26, 2023

Controlling a System with an Observer

Today we will introduce a new method of control based on **observers**.

To see how this new method builds on previous ideas, let's consider all of these methods in the context of a particular problem.

Two-Spring System

The **plant** consists of two springs and two masses. The goal is to move the input $u(t) = x_0(t)$ so as to position the bottom mass $y(t) = x_2(t)$ at some desired location $y_d(t)$.

A classical controller for this problem has the following form.

To solve this classical control problem, me must

- find the equations of motion for the plant (the two-spring system) and
- express those equations in terms of transfer function.

Two-Spring System

Equations of motion.()

$$
f_{m1} = m\ddot{x}_1(t) = k\left(x_0(t) - x_1(t)\right) - k\left(x_1(t) - x_2(t)\right) - b\dot{x}_1(t) - mg
$$

$$
f_{m2} = m\ddot{x}_2(t) = k\left(x_1(t) - x_2(t)\right) - b\dot{x}_2(t) - mg
$$

Outputs $x_1(t)$ and $x_2(t)$ result from two separable inputs: gravity mg , which generates constant offsets, and $x_0(t)$, which determines the dynamics.

Two-Spring System

Transfer function.

$$
H(s) = \frac{X_2(s)}{X_0(s)} = \frac{k^2}{(s^2m + sb + 2k)(s^2m + sb + k) - k^2}
$$

A proportional controller has the following form.

+ *K^p H*(*s*) − *yd*(*t*) *e*(*t*) *u*(*t*)=*x*0(*t*) *y*(*t*)=*x*2(*t*)

The feedback system is stable for only a small range of K_p : $K_p < 2.5$

Step responses:

Slow convergence and large oscillatory overshoots. Why such poor behavior?

Root locus.

Proportional plus derivative performance is similar to that for proportional.

Step responses:

Proportional plus derivative

Root locus.

State-Space Control

State-space control is **much** better.

What is it about state-space control that allows better performance?

Two-Spring System

The state-space approach uses information from $x_2(t)$ and $x_1(t)$. The combination of $x_1(t)$ and $x_2(t)$ is much more powerful than $x_2(t)$ alone.

Beyond State-Space Control

However, to feed back information about $x_1(t)$, we must **measure** $x_1(t)$.

What if it's not possible to measure $x_1(t)$.

Idea: Could we simulate the unmeasured states?

An observer is a simulation of the plant that is used to provide information about unmeasured states. This simulation will be part of the controller!

We can build state-space controllers for both the plant and the simulation. If our model of the plant (A, B, C) is perfect, then $\hat{\mathbf{x}}(t)=\mathbf{x}(t)$ and $\hat{y}(t)=y(t)$.

Recall the problem with designing a state-space controller for the twosprings system: the plant did not provide outputs for all of the states $\mathbf{x}(t)$.

If our model of the plant (**A, B, C**) is perfect, then $\hat{\mathbf{x}}(t) = \mathbf{x}(t)$ and we can replace $\mathbf{Kx}(t)$ with $\mathbf{K}\hat{\mathbf{x}}(t)$. This substitution also makes $u(t) = \hat{u}(t)$.

The resulting structure provides feedback from all **simulated** states $\hat{\mathbf{x}}(t)$. But there is a problem. What's wrong with this scheme?

The resulting structure provides feedback from all **simulated** states $\hat{\mathbf{x}}(t)$. Unfortunately even small differences between the plant and simulation can lead to large differences between $\mathbf{x}(t)$ and $\hat{\mathbf{x}}(t)$.

Fortunately, we can use **feedback** to correct simulation errors! Calculate the difference between $y(t)$ and $\hat{y}(t)$. Then use that signal (times **L**) to correct $\hat{\mathbf{x}}(t)$.

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Simulation dynamics:

$$
\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))
$$

Simulation dynamics:

$$
\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))
$$

Simulation dynamics:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_ry_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Simulation dynamics:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_ry_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Plant dynamics: $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$
Simulation dynamics: $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$ $\dot{\mathbf{x}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Dynamics:

$$
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)
$$

$$
\dot{\mathbf{x}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))
$$

Define $e(t)$ to be the difference between the plant and simulation states:

$$
\mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t)
$$

Subtract $\dot{\hat{\mathbf{x}}}(t)$ from $\dot{\mathbf{x}}(t)$ to find the derivative of $\mathbf{e}(t)$:

$$
\dot{\mathbf{e}}(t) = \mathbf{A}\mathbf{e}(t) - \mathbf{L}\Big(y(t) - \hat{y}(t)\Big) = \mathbf{A}\mathbf{e}(t) - \mathbf{L}\mathbf{C}\mathbf{e}(t)
$$

Append the $\dot{\mathbf{x}}(t)$ and $\dot{\mathbf{e}}(t)$ to make a new **combined** state vector:

$$
\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\mathbf{e}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B} \mathbf{K} & \mathbf{B} \mathbf{K} \\ \mathbf{0} & \mathbf{A} - \mathbf{LC} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} K_r y_d(t)
$$

Notice that the resulting matrix equation has the same form as the original state evolution equation:

$$
\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)
$$

where $\mathbf{A}, \mathbf{B},$ and $\mathbf{x}(t)$ have been extended to include error terms.

Combined dynamics: state $+$ observer.

$$
\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\mathbf{e}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B} \mathbf{K} & \mathbf{B} \mathbf{K} \\ \mathbf{0} & \mathbf{A} - \mathbf{L} \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} K_r y_d(t)
$$

Because the evolution matrix has a Block Upper Triangular form, its determinant (and therefore the corresponding poles) are the union of those of $A-BK$ and those of $A-LC$.

$$
\text{det}\left(\left[\begin{array}{cc}\textbf{M}_{11} & \textbf{M}_{12} \\ \textbf{0} & \textbf{M}_{22} \end{array}\right]\right)=\text{det}(\textbf{M}_{11})\times\text{det}(\textbf{M}_{22})
$$

The independence of these eigenvalues allows us to independently choose the poles of $A-BK$ and $A-LC$.

This allows us to pick an L to give fast decay of observer state errors (going from $\mathbf{x}(t)$ to $\hat{\mathbf{x}}(t)$) relative to tracking errors (going from $y_d(t)$ to $y(t)$).

Since $e(t) = x(t) - \hat{x}(t)$, we can formulate the combined dynamics of the plant and observer in terms of a state vector $\begin{bmatrix} \mathbf{x}(t) \\ \infty \end{bmatrix}$ $\widehat{\mathbf{x}}(t)$ \int instead of \int_{a}^{b} **x**(*t*) e(*t*) :

These new equations are then as follows:

$$
\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\hat{\mathbf{x}}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{LC} & \mathbf{A} - \mathbf{LC} - \mathbf{BK} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix} K_r y_d(t)
$$

$$
y(t) = \begin{bmatrix} \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix}
$$

Choosing L

How can we choose **L** to make the simulated states $\hat{\mathbf{x}}(t)$ converge to $\mathbf{x}(t)$?

Choosing L

How can we choose **L** to make the simulated states $\hat{\mathbf{x}}(t)$ converge to $\mathbf{x}(t)$?

In the normal state-space model, we choose the control vector $\boldsymbol{\mathsf{K}}$ based on the eigenvalues of plant dynamics:

 $sX(s) = AX(s) - BKX(s) + BKrY_d$

Choose K to optimize properties of the eigenvalues of $A-BK$.

For the observer, we similarly choose the feedback vector L based on the eigenvalues of the error dynamics:

 $s\mathbf{E}(s) = \mathbf{A}\mathbf{E}(s) - \mathbf{LCE}(s)$

Choose L to optimize properties of the eigenvalues of A-LC.

The K and L problems have a similar form $-$ but they are not identical. The form can be made identical by transposition, i.e., optimize the eigenvalues of the transpose $\mathbf{A}^T\!-\!\mathbf{C}^T\mathbf{L}^T$ (which are identical to those of $\mathbf{A}\text{-}\mathbf{LC}$).

Choosing L

Since optimizing K and L can be cast into problems with the same form, the optimizations can be solved using the same methods.

```
K = place(A,B,[poles])L = place(A.^{\prime}, C.^{\prime}, [poles]).'
```

```
or
```

```
K = \text{lgr}(A, B, Q, R)L = \text{lgr}(A.^{\prime}, C.^{\prime}, Q, R).'
```
Summary

Today we formulated a new approach to control based on **observers**.

- An observer is a simulation of the plant that is part of the controller.
- The biggest challenge in designing an observer is keeping its state upto-date with that of the plant.
- We can feedback the difference between the measured and simulated outputs to correct the simulated states.