6.3100: Dynamic System Modeling and Control Design

Controlling a System with an Observer

April 26, 2023

Controlling a System with an Observer

Today we will introduce a new method of control based on observers.

To see how this new method builds on previous ideas, let's consider all of these methods in the context of a particular problem.

Two-Spring System

The **plant** consists of two springs and two masses. The goal is to move the input $u(t) = x_0(t)$ so as to position the bottom mass $y(t) = x_2(t)$ at some desired location $y_d(t)$.

A classical controller for this problem has the following form.

To solve this classical control problem, me must

- find the equations of motion for the plant (the two-spring system) and
- express those equations in terms of transfer function.

Two-Spring System

Equations of motion.

$$f_{m1} = m\ddot{x}_1(t) = k\Big(x_0(t) - x_1(t)\Big) - k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_1(t) - mg$$

$$f_{m2} = m\ddot{x}_2(t) = k\Big(x_1(t) - x_2(t)\Big) - b\dot{x}_2(t) - mg$$

Outputs $x_1(t)$ and $x_2(t)$ result from two separable inputs: gravity mg, which generates constant offsets, and $x_0(t)$, which determines the dynamics.

Two-Spring System

Transfer function.

$$H(s) = \frac{X_2(s)}{X_0(s)} = \frac{k^2}{(s^2m + sb + 2k)(s^2m + sb + k) - k^2}$$

A proportional controller has the following form.

$$y_d(t) \longrightarrow e(t)$$
 K_p $u(t) = x_0(t)$ $H(s)$ $y(t) = x_2(t)$

The feedback system is stable for only a small range of $K_p\!\!:\,K_p\!\!<\!\!2.5$

Step responses:

Slow convergence and large oscillatory overshoots. Why such poor behavior?

Root locus.

Proportional plus derivative performance is similar to that for proportional.

Step responses:

Proportional plus derivative

Root locus.

State-Space Control

State-space control is **much** better.

What is it about state-space control that allows better performance?

Two-Spring System

The state-space approach uses information from $x_2(t)$ and $x_1(t)$. The combination of $x_1(t)$ and $x_2(t)$ is much more powerful than $x_2(t)$ alone.

Beyond State-Space Control

However, to feed back information about $x_1(t)$, we must measure $x_1(t)$.

What if it's not possible to measure $x_1(t)$.

Idea: Could we simulate the unmeasured states?

An **observer** is a **simulation** of the plant that is used to provide information about unmeasured states. This **simulation** will be part of the controller!

We can build state-space controllers for both the plant and the simulation. If our model of the plant (**A**, **B**, **C**) is perfect, then $\hat{\mathbf{x}}(t) = \mathbf{x}(t)$ and $\hat{y}(t) = y(t)$.

Recall the problem with designing a state-space controller for the twosprings system: the plant did not provide outputs for all of the states $\mathbf{x}(t)$.

If our model of the plant (**A**, **B**, **C**) is perfect, then $\hat{\mathbf{x}}(t) = \mathbf{x}(t)$ and we can replace $\mathbf{K}\mathbf{x}(t)$ with $\mathbf{K}\hat{\mathbf{x}}(t)$. This substitution also makes $u(t) = \hat{u}(t)$.

The resulting structure provides feedback from all simulated states $\hat{\mathbf{x}}(t)$. But there is a problem. What's wrong with this scheme?

The resulting structure provides feedback from all **simulated** states $\hat{\mathbf{x}}(t)$. Unfortunately even small differences between the plant and simulation can lead to large differences between $\mathbf{x}(t)$ and $\hat{\mathbf{x}}(t)$.

Fortunately, we can use **feedback** to correct simulation errors! Calculate the difference between y(t) and $\hat{y}(t)$. Then use that signal (times L) to correct $\hat{\mathbf{x}}(t)$.

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Plant dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$

Simulation dynamics:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Simulation dynamics:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Simulation dynamics:

 $\dot{\hat{\mathbf{x}}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

Simulation dynamics:

 $\dot{\mathbf{x}}(t) = \mathbf{A}\hat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\hat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}(y(t) - \hat{y}(t))$

 $\begin{array}{ll} \mbox{Plant dynamics:} & \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_ry_d(t) \\ \mbox{Simulation dynamics:} & \dot{\widehat{\mathbf{x}}}(t) = \mathbf{A}\widehat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_ry_d(t) + \mathbf{L}(y(t) - \widehat{y}(t)) \\ \end{array}$

Dynamics:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t)$$
$$\dot{\widehat{\mathbf{x}}}(t) = \mathbf{A}\widehat{\mathbf{x}}(t) - \mathbf{B}\mathbf{K}\widehat{\mathbf{x}}(t) + \mathbf{B}K_r y_d(t) + \mathbf{L}\left(y(t) - \widehat{y}(t)\right)$$

Define $\mathbf{e}(t)$ to be the difference between the plant and simulation states:

$$\mathbf{e}(t) = \mathbf{x}(t) - \widehat{\mathbf{x}}(t)$$

Subtract $\dot{\hat{\mathbf{x}}}(t)$ from $\dot{\mathbf{x}}(t)$ to find the derivative of $\mathbf{e}(t)$:

$$\dot{\mathbf{e}}(t) = \mathbf{A}\mathbf{e}(t) - \mathbf{L}\left(y(t) - \hat{y}(t)\right) = \mathbf{A}\mathbf{e}(t) - \mathbf{L}\mathbf{C}\mathbf{e}(t)$$

Append the $\dot{\mathbf{x}}(t)$ and $\dot{\mathbf{e}}(t)$ to make a new **combined** state vector:

$$\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\mathbf{e}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}\mathbf{K} \\ \mathbf{0} & \mathbf{A} - \mathbf{L}\mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} K_r y_d(t)$$

Notice that the resulting matrix equation has the same form as the original state evolution equation:

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}u(t)$$

where \mathbf{A}, \mathbf{B} , and $\mathbf{x}(t)$ have been extended to include error terms.

Combined dynamics: state + observer.

$$\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\mathbf{e}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} - \mathbf{B}\mathbf{K} & \mathbf{B}\mathbf{K} \\ \mathbf{0} & \mathbf{A} - \mathbf{L}\mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{0} \end{bmatrix} K_r y_d(t)$$

Because the evolution matrix has a Block Upper Triangular form, its determinant (and therefore the corresponding poles) are the union of those of $A\!-\!BK$ and those of $A\!-\!LC$.

$$\text{det} \left(\begin{bmatrix} M_{11} & M_{12} \\ 0 & M_{22} \end{bmatrix} \right) = \text{det}(M_{11}) \times \text{det}(M_{22})$$

The independence of these eigenvalues allows us to independently choose the poles of $A\!-\!BK$ and $A\!-\!LC.$

This allows us to pick an \mathbf{L} to give fast decay of observer state errors (going from $\mathbf{x}(t)$ to $\hat{\mathbf{x}}(t)$) relative to tracking errors (going from $y_d(t)$ to y(t)).

Since $\mathbf{e}(t) = \mathbf{x}(t) - \hat{\mathbf{x}}(t)$, we can formulate the combined dynamics of the plant and observer in terms of a state vector $\begin{bmatrix} \mathbf{x}(t) \\ \hat{\mathbf{x}}(t) \end{bmatrix}$ instead of $\begin{bmatrix} \mathbf{x}(t) \\ \mathbf{e}(t) \end{bmatrix}$:

These new equations are then as follows:

$$\begin{bmatrix} \dot{\mathbf{x}}(t) \\ \dot{\widehat{\mathbf{x}}}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{A} & -\mathbf{B}\mathbf{K} \\ \mathbf{L}\mathbf{C} & \mathbf{A} - \mathbf{L}\mathbf{C} - \mathbf{B}\mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \widehat{\mathbf{x}}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix} K_r y_d(t)$$

$$y(t) = \begin{bmatrix} \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{x}(t) \\ \widehat{\mathbf{x}}(t) \end{bmatrix}$$

Choosing L

How can we choose L to make the simulated states $\hat{\mathbf{x}}(t)$ converge to $\mathbf{x}(t)$?

Choosing L

How can we choose **L** to make the simulated states $\hat{\mathbf{x}}(t)$ converge to $\mathbf{x}(t)$?

In the normal state-space model, we choose the control vector ${\bf K}$ based on the eigenvalues of plant dynamics:

 $s\mathbf{X}(s) = \mathbf{A}\mathbf{X}(s) - \mathbf{B}\mathbf{K}\mathbf{X}(s) + \mathbf{B}KrY_d$

Choose ${\bf K}$ to optimize properties of the eigenvalues of ${\bf A}\text{-}{\bf B}{\bf K}.$

For the observer, we similarly choose the feedback vector ${\sf L}$ based on the eigenvalues of the error dynamics:

 $s\mathbf{E}(s) = \mathbf{A}\mathbf{E}(s) - \mathbf{L}\mathbf{C}\mathbf{E}(s)$

Choose L to optimize properties of the eigenvalues of A-LC.

The **K** and **L** problems have a similar form – but they are not identical. The form can be made identical by transposition, i.e., optimize the eigenvalues of the transpose $\mathbf{A}^T - \mathbf{C}^T \mathbf{L}^T$ (which are identical to those of **A-LC**).

Choosing L

Since optimizing K and L can be cast into problems with the same form, the optimizations can be solved using the same methods.

```
K = place(A,B,[poles])
L = place(A.',C.',[poles]).'
```

or

K = lqr(A,B,Q,R)L = lqr(A.',C.',Q,R).'

Summary

Today we formulated a new approach to control based on observers.

- An observer is a simulation of the plant that is part of the controller.
- The biggest challenge in designing an observer is keeping its state upto-date with that of the plant.
- We can feedback the difference between the measured and simulated outputs to correct the simulated states.