6.3100: Dynamic System Modeling and Control Design

Controlling a System with an Observer

May 1, 2023



Two-Spring System

Last time, we developed classical and state-space controllers for a two-
spring system.

The goal was to move the input u(t) = x¢(t) so as to position the bottom
mass y(t) = x2(t) at some desired location yg4(t).



Comparison of Control Schemes

We found that the state-space control system allowed much better control
of overshoot than the classical control systems.
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We reasoned that better performance resulted because the state-space
controller has access to the motions of both masses.

We also outlined a framework for designing an observer to provide infor-
mation about the motion of the center mass without actually measuring
that motion.

Today we will work through the implementation of this design.



State-Space Model

To apply the state-space approach, we must express the equations of mo-
tion in the following matrix form.
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Check Yourself

Find A, B, and C.




State-Space Description

Equations of motion:
Fn1 = miy (t) = k(mo(t) - xl(t)> - k(ml(t) - m(t)) — by (t)
fm2 = mia(t) = ki(:l?l (t) — $2(t)> — bio(t)

Four state variables (two displacements and their velocities):
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State-Space Model
To apply the state-space approach, we must express the equations of mo-
tion in the following matrix form.
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State-Space Controller

A state-space controller can then be expressed as follows.

ya(t) —»| K, #@it)b@x—(t)b X(ﬁb y(t)

How do we find K and K,7?



State-Space Controller

A state-space controller can then be expressed as follows.

ya(t) —»| K, _»@_u_(t)>@x_(t)>ﬁ> y(t)

L

We can find K using pole placement:
K = place(4A,B, [poles])
or LQR:

Q = diag([1,1,1,11)

R=1

K = 1qr(4,B,Q,R)
and

Kr = -1/(Cx((A-BK)\B))



State-Space Controller

A state-space controller can then be expressed as follows.

ya(t) —»| K, _»@_u_(tL@x_(t)’Q’ y(t)

L

We can find K using pole placement:
K = place(4A,B, [poles])
or LQR:

Q = diag([1,1,1,11)

R=1

K = 1qr(A,B,Q,R)
and

Kr = -1/(Cx((A-BK)\B)) <-- where does this come from?



State-Space Controller
Assume that we will implement the controller with a microprocessor.

ya(t) —»| K, _>®it)>@x_(t)> X(ﬁb y(t)

Express the controller algorithm in pseudo-code.
Assume that the step function (below) is executed once every AT seconds.

void step(){
PUT YOUR CODE HERE



State-Space Controller
Assume that we will implement the controller with a microprocessor.

ya(t) —»| K, _>®it)>@x_(t)> X(ﬁb y(t)

Express the controller algorithm in pseudo-code.
Assume that the step function (below) is executed once every AT seconds.

void step(){

vl,x1,v2,x2 = get_state_x();

put_command_u(Kr*yd - (Kilxvl + K2*x1 + K3*v2 + K4*x2));
}

Where are A, B, and C? Shouldn't the controller need these?



State-Space Controller

Assume that we will implement the controller with a microprocessor.

va(t) —»| K, _,@ﬂ,@X_(t), X@. y(t)

plant

Where are A,B and C?

A, B and C are components of our model of the plant (blue shading above).
They are used to design K and K,, but do not appear explicitly in a simple
state-space controller.



Observers

By contrast, observer-based controllers explicitly depend on A, B, and C.



Observers (Recap)

An observer is a simulation of the plant that is used by the controller —

i.e., the simulation is part of the controller!
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Observers (Recap)

We can build state-space controllers for both the plant and the simulation.
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Observers (Recap)

If our model of the plant (A, B, C) is perfect, then x(t)

= x(t) and we can
replace Kx(t) with Kx(¢). This substitution also makes u(t) =

u(t).
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Observers (Recap)

The resulting structure provides feedback from all simulated states X(¢).
Unfortunately even small differences between the plant and simulation can
lead to large differences between x(t) and X(t).
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Observers (Recap)

Fortunately, we can use feedback to correct simulation errors!
Calculate the difference between y(t) and 37( )
Then use that signal (times L) to correct x(¢
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Observers (Recap)

Dynamics:
x(t) = Ax(t) — BKX(t) + BK,y4(t)
X(t) = AR(t) — BKX(t) + BE,ya(t) + L(y(t) — 5(¢))

Matrix form:
[;Em N [th) A—ES%BK] [;g” + [g} K,ya(t)
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Choose K to optimize the eigenvalues of A — BK.
Choose L to optimize the eigenvalues of AT—CTLT,

K = place(A,B, [poles])
L = place(A.’,C.’, [poles]).’
or

K = 1qr(4,B,Q,R)
L = 1qr(A.’,C.7,Q,R) .’



Noise Performance

Feedback control can be significantly degraded by noise that is introduced
by the sensors that provide information about the plant to the controller.

Suggest a model for the effects of sensor noise on the following state-space
control system. Assume that sensor noise is additive.

va(t)— K, _.@_“_(t).@"_(’f). O o WY




Effects of Sensor Noise

Sensor noise can contaminate each of the state measurements.

va(t) — K, _.@_“_(t).@"_(’f). O o WY




Effects of Sensor Noise

How will this noise affect performance of the control system?

va(t) — K, _.@_“_“).@"_(’f). O o WY




Results 1

Compare with additive noise: amplitude = 0
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Results 2

Compare with additive noise: amplitude = 0.3
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Results 3

Compare with additive noise: amplitude = 1
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Results 4

Additive noise: 0, 0.3, and 1:

simple state-space simple state-space
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Effects of Sensor Noise

How should we model sensor noise with an observer?

ya(t) —»| K, —>®_—u(t—)>@it)>9> y(t)
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Effects of Sensor Noise

How will this noise affect performance of the control system?
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Results 5

Compare a simple state-space controller with an observer-based controller.
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Results 6

Compare a simple state-space controller with an observer-based controller.
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Results 7
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Compare a simple state-space controller with an observer-based controller.

observer/simulation

y(t) — ¥(®)

01234567

v (t)

AN

01234567

o

—_—
N —
o -
e —
o~
o -
- -



Effects of Sensor Noise

How will this noise affect performance of the control system?
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