
6.3100: Dynamic System Modeling and Control Design

Discrete-Time Observer

May 8, 2023

Discrete-Time Observer

For the past few lectures, we have analyzed behaviors of continuous-time

observers. We analyzed convergence of the observer and plant states:

x̂(t)→ x(t)
as well as convergence of the plant output to the desired value:

y(t)→ yd(t)
We also looked at the sensitivity of the controllers to noise.

But microcontrollers (such as the Teensy) are increasingly used because of

their low cost and high performance. And modern microcontrollers operate

in discrete-time.

Today: analyze systems that combine continuous time representations

of the plant with discrete time implementations of control.

Motor Speed Control

We will use the motor speed control system as an example.

i(t) r l

keω(t) kmi(t) 1
kf Jv(t) ω(t)

The voltage v(t) represents the electrical input to the motor.

It excites a current i(t), which generates a torque kmi(t) that tends to

rotate the motor shaft.

The torque is resisted by the moment of inertia J and by friction (kf).

As the motor spins, it generates a back emf (keω(t)) that tends to reduce

the electrical current i(t) drawn by the motor.

Motor Speed Control: Two-Port Model

Motors have two ports: one is electrical and one is mechanical.

i(t) r l

keω(t) kmi(t) 1
kf Jv(t) ω(t)

this Electrical port Mechanical port

Motor Speed Control: Mathematical Representation

Simple circuit analysis provides a mathematical representation.

i(t) r l

keω(t) kmi(t) 1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)

dt
+ keω(t) kmi(t) = kf ω(t) + J

dω(t)
dt

Motor Speed Control: Matrix Representation

The equations are conveniently represented by a pair of matrix equations.

i(t) r l

keω(t) kmi(t) 1
kf Jv(t) ω(t)

v(t) = ri(t) + l
di(t)

dt
+ keω(t) kmi(t) = kf ω(t) + J

dω(t)
dt

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1

l

0

]
v(t)

d

dt

}

x(t) =
}

A

}

x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[

i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

State-Space Model

The matrix equations provide a complete representation of the plant. make

the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd u(t) y(t)

plant

ẋ(t) x(t)

d

dt

[
i(t)
ω(t)

]
=
[− r

l −ke
l

km
J −

kf
J

] [
i(t)
ω(t)

]
+
[1

l

0

]
v(t)

d

dt

}

x(t) =
}

A

}

x(t) +

}

B

}

u(t)

ω(t) = [0 1]
[

i(t)
ω(t)

]
}

y(t) =

}

C

}

x(t)

State-Space Model + State-Space Controller

This motor model was then put into a feedback loop that was designed to

make the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

where K is found using pole placement:

K = place(A,B,[poles])
or LQR:

Q = diag([1,1,1,1]) and R = 1
K = lqr(A,B,Q,R)

and

Kr = -1/(C*((A-BK)\B)

State-Space Model + Observer

We also analyzed the performance of an observer-based controller. make

the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

Must specify both K and L.

Effects of Sensor Noise

We looked at noise performance for both simple state-space controller ...

make the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

We focused on sensing (measurement) noise at the interface between the

plant and the controller.

Effects of Sensor Noise

We looked at noise performance for both simple state-space controller ...

make the output speed y(t) = ω(t) track the desired speed yd(t).

B +
∫

C

A

yd Kr +

K

−
yd

+ n(t)

y(t)
u(t)

plant

ẋ(t) x(t)

We focused on sensing (measurement) noise at the interface between the

plant and the controller.

Discrete-Time Control

Today we will look at a different issue that affects performance. now is

the time y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

Hybrid representation: continuous-time plant with discrete-time control.

The state x(t) of the plant must be converted to discrete time to process

in a digital controller (such as the Teensy).

The resulting discrete-time command u[n] must be converted to continuous

time for the plant.

Discrete-Time Control

Today we will look at a different issue that affects performance. now is

the time y(t) = ω(t) yd(t).

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Hybrid representation: continuous-time plant with discrete-time control.

The state x(t) of the plant must be converted to discrete time to process

in a digital controller (such as the Teensy).

The resulting discrete-time command u[n] must be converted to continuous

time for the plant.

Analog-To-Digital Conversion

Analog-to-digital conversion entails two types of transformations.

Sampling: process by which a function of real domain is transformed into

a function of integer domain.

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

Sampling

A function of real domain is transformed into a function of integer domain.

t

f(t)

0∆T 2∆T 4∆T 6∆T 8∆T 10∆T

n

f [n] = f(n∆)

0 2 4 6 8 10

Quantization

Quantization: process by which a continuous range of amplitudes is rep-

resented by a finite range of integers.

−1

0

1

t

vi(t)

2 bits

0
0 vi

vo

−1

0

1

t

vi(t)

3 bits

0
0 vi

vo

−1

0

1

t

vi(t)

4 bits

0
0 vi

vo

Digital-To-Analog Conversion

Digital-to-analog conversion reconstructs an analog signal from its digital

representation. zero-order hold

n

x[n]

0 2 4 6 8 10
t

x(t)

0 2∆T 4∆T 6∆T 8∆T 10∆T

While these methods of conversion are common, there are numerous other

schemes (specialized for audio, images, etc.).

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd
u(t)

+

+

B C

A

K

L∫

y(t)

ŷ(t)

˙̂x(t) x̂(t)
−

plant

ẋ(t) x(t)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

Signals outside plant must be discrete time: y(t)→ y[n]; u[n]→ u(t).

Integrator in observer → delay: x̂(t)→ x̂[n]; ˙̂x(t)→ x̂[n+1]
Control matrices A,B,C,L, and K must be converted to discrete versions.

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

What criteria should we use to determine Ad,Bd, and Cd?

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

1. x̂[n+1] = ẋ(n∆T); for all n 2. x̂[n] = x(n∆T); for all n

3. ŷ[n] = y(n∆T); for all n 4. x(t) = x̂[b t
∆T c]; for n∆T<t<(n+1)∆T

5. none of the above

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +
−

yd ADCDAC
u[n] u(t)

+

+

Bd Cd

Ad

Kd

Ld

Delay

y[n]

ŷ[n]

x̂[n+1] x̂[n]
−

plant

ẋ(t) x(t)

What’s the relation between A and Ad? Between B and Bd? C and Cd?

Discrete-Time Observer Matrices

We want the state of the observer at time index n (x̂[n]) to track the state

of the plant (x(t)) at the corresponding time t = n∆T .

Assume that the states of the plant and observer are equal at t = n∆T :

x̂[n] = x(n∆T)
Since u(t) is the output of a digital-to-analog converter, its value is constant

at u[n] for n∆T ≤ t ≤ (n+1)∆T . With constant input over this period,

x(t) = eA(t−n∆T)
x(n∆T) +

(
eA(t−n∆T)−I

)
A

−1
Bu[n]

which is easy to proved by showing that this expression is the solution to

ẋ(t) = Ax(t) +Bu[n]
Since u(t) = u[n] is constant over the interval n∆T < t < (n+1)∆T :

ẋ(t) = AeA(t−n∆T)
x(n∆T) +AeA(t−n∆T)

A
−1
Bu[n]

Ax(t) +Bu[n] = AeA(t−n∆T)
x(n∆T) +A

(
eA(t−n∆T)−I

)
A

−1
Bu[n] +Bu[n]

Discrete-Time Observer Matrices

We want the state of the observer at time index n (x̂[n]) to track the state

of the plant (x(t)) at the corresponding time t = n∆T .

Assume that the states of the plant and observer are equal at t = n∆T :

x̂[n] = x(n∆T)
Since u(t) is the output of a digital-to-analog converter, its value is constant

at u[n] for n∆T ≤ t ≤ (n+1)∆T . With constant input over this period,

x(t) = eA(t−n∆T)
x(n∆T) +

(
eA(t−n∆T)−I

)
A

−1
Bu[n]

Discrete-Time Observer Matrices

We want the state of the observer at time index n (x̂[n]) to track the state

of the plant (x(t)) at the corresponding time t = n∆T .

Assume that the states of the plant and observer are equal at t = n∆T :

x̂[n] = x(n∆T)
Since u(t) is the output of a digital-to-analog converter, its value is constant

at u[n] for n∆T ≤ t ≤ (n+1)∆T . With constant input over this period,

x(t) = eA(t−n∆T)
x(n∆T) +

(
eA(t−n∆T)−I

)
A

−1
Bu[n]

It follows that

x((n+1)∆T) = eA∆T
x(n∆T) +

(
eA∆T−I

)
A

−1
Bu[n]

and the state of the observer will track samples of the state of the plant if

x̂[n+1] = Adx̂[n] +Bdu[n]
if

Ad = eA∆T

Bd =
(

eA∆T−I
)
A

−1
B

Cd = C

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd y(t)

u(t)

plant

ẋ(t) x(t)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Add analog-to-digital converters to outputs of plant and digital-to-analog

converters to input to plant.

How about K?

Is this a K or Kd?

How should it be computed?

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Consider the motor model with ∆T = 0.0001 s. Which of these is better?

K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Consider the motor model with ∆T = 0.0001 s. Which of these is better?

K1 = lqr(A,B,Q,R)
K2 = dlqr(A,B,Q,R)
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R)
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R)
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R)

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Consider the motor model with ∆T = 0.0001 s. Which of these is better?

K
K1 = lqr(A,B,Q,R) [0.1597 0.6305]
K2 = dlqr(A,B,Q,R) [-7.0024 -0.4600]
K3 = lqr(I+A*DeltaT,B*DeltaT,Q,R) [186.0068 9300.4668]
K4 = dlqr(I+A*DeltaT,B*DeltaT,Q,R) [0.1545 0.6287]
K5 = lqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R) [97.8197 10016.3798]
K6 = dlqr(expm(A*DeltaT),(expm(A*DeltaT)-I)*A\B,Q,R) [0.1546 0.6288]

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

Consider the motor model with ∆T = 0.0001 s. Which of these is better?

Since ∆T is small compared to the dynamics of the system, the path from

x(t) to u(t) is nearly instantaneous. Therefore we can approximate the

behavior of this hybrid system as purely continuous.

→ K1 is a reasonable approximation.

K2 never makes sense: one cannot run dlqr on a CT evolution matrix.

Check Yourself

List the changes that are needed to convert the controller to discrete time.

B +
∫

C

A

yd Kr +

K

−
yd ADCDAC

ADC

u[n]
y[n]

u(t)

plant

ẋ(t) x(t)

The evolution matrices for K5 and K6 are discrete approximations to the CT

matrices A and B.

→ K5 doesn’t make sense: cannot run lqr on CT matrices.

→ K6 computes the result of a DT approximation to the CT system.

Similarly, K3 and K4 represent first-order DT approximations to the CT.

→ K3 doesn’t make sense: cannot run lqr on CT matrices.

→ K4 represents a reasonable DT approximation to the CT system.

