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6.3100 Lecture 2 Notes – Spring 2024 

General solutions to first-order DT system, stability and convergence 

Dennis Freeman, Elfar Adalsteinsson, and Kevin Chen 

Outline: 

1. Proportional control for first order discrete time system 

2. Solutions to first order discrete time systems 

3. Choosing Kp for a first order system: stability, steady-state error, and convergence  

 

1. Proportional control for first order discrete time system  

In the previous lecture, we introduced a simple first order discrete time (DT) system and the 

proportional controller. As a reminder, the controller and the first order system equations are 

given by:  

Proportional controller: 𝑢[𝑛] = 𝐾𝑝(𝑇𝑑[𝑛] − 𝑇𝑚[𝑛]) 

Plant: 
𝑇𝑚[𝑛]−𝑇𝑚[𝑛−1]

∆𝑇
= 𝛾𝑢[𝑛 − 1] 

We can substitute the first equation into the second equation:  

𝑇𝑚[𝑛] − 𝑇𝑚[𝑛 − 1]

∆𝑇
= 𝛾𝐾𝑝(𝑇𝑑[𝑛 − 1] − 𝑇𝑚[𝑛 − 1]) 

Simplifying this equation and collecting terms, we obtain the expression:  

𝑇𝑚[𝑛] = (1 − 𝛾𝐾𝑝∆𝑇)𝑇𝑚[𝑛 − 1] + 𝛾∆𝑇𝐾𝑝𝑇𝑑[𝑛 − 1] 

This equation has the form of a 1st-order DT system. We can write the general form as:  

𝑦[𝑛] = 𝜆𝑦[𝑛 − 1] + 𝑏𝑥[𝑛 − 1]   (#1) 

Here 𝑦[𝑛] is the variable we aim to solve, 𝑥[𝑛] is the input (driving) function we set, 𝜆 is the 

natural frequency (we will explain why later), and 𝑏 is a multiplicative constant. In the next 

section, we will study the solution and property of equation 1 in detail.  

2. Solutions to first order discrete time systems 

We are going to solve equation (1) for several cases. 

Case 1: x[n]= 0 for all n. This is called zero-input response (ZIR)  

The equation simplifies to 𝑦[𝑛] = 𝜆𝑦[𝑛 − 1].  

The solution of this problem is given by:  

𝑦[𝑛] = 𝜆𝑛𝑦[0] 

This is a very simple case. Note that the steady state solution depends on the value of 𝜆.  
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If |𝜆| < 1, then 𝑦[∞] = 0.  

If 𝜆 = 1, then 𝑦[∞] = 𝑦[0]. 

If 𝜆 = −1, then 𝑦[𝑛] = (−1)𝑛𝑦[0]. The solution does not converge.  

If |𝜆| > 1, then |𝑦[∞]| → ∞. The solution does not converge.   

 

Case 2: x[n]= 1 for all n, and y[0]=0. This is called zero-state response (ZSR).   

Note: x[n] = 1 is not limiting. Through invoking linearity and time invariance (next lecture), we 

can relax the solution form by letting x[n] be any arbitrary function.  

In this case, equation (1) becomes  

𝑦[𝑛] = 𝜆𝑦[𝑛 − 1] + 𝑏 

First, assuming the solution converges, let us find 𝑦[∞]. We have  

𝑦[∞] = 𝜆𝑦[∞] + 𝑏 

𝑦[∞] =
𝑏

1 − 𝜆
 

Next, let’s find 𝑦[𝑛]. We can write y[n] iteratively, as:  

𝑦[0] = 0

𝑦[1] = 𝜆𝑦[0] + 𝑏 = 𝑏

𝑦[2] = 𝜆𝑦[1] + 𝑏 = 𝜆𝑏 + 𝑏

𝑦[3] = 𝜆𝑦[2] + 𝑏 = 𝜆2𝑏 + 𝜆𝑏 + 𝑏

 

Following this pattern, we get:  

𝑦[𝑛] = ∑ 𝜆𝑚𝑏

𝑛−1

𝑚=0

 and 𝑦[∞] = ∑ 𝜆𝑚𝑏

∞

𝑚=0

  

This implies  

𝑦[𝑛] = 𝑦[∞] − ∑ 𝜆𝑚𝑏

∞

𝑚=𝑛

= 𝑦[∞] − 𝜆𝑛 ∑ 𝜆𝑚𝑏

∞

𝑚=0

= 𝑦[∞] − 𝜆𝑛𝑦[∞] = 𝑦[∞](1 − 𝜆𝑛) 

Substituting the solution of 𝑦[∞], we obtain:  

𝑦[𝑛] =
𝑏

1 − 𝜆
(1 − 𝜆𝑛) 

Let’s interpret what the solution looks like. Suppose b = 1, we consider 6 scenarios: 
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(1) 𝜆 > 1. Solution diverges 

(2) 𝜆 < −1. Solution diverges 

(3) 𝜆 = −1. Solution diverges 

(4) 𝜆 = 1. Solution diverges 

(5) 0 < 𝜆 < 1. Solution converges 

(6) −1 < 𝜆 < 0. Solution converges 

 

Now we know how to solve 1st order DT systems, let’s return to our 3D-printing controller 

example. It’s worthwhile to emphasize again that the value of 𝜆 is crucial for the solution to either 

diverge or converge. In a control system, we need to design stable systems through setting the 

value of 𝜆.  

3. Choosing Kp for a first order system: stability, steady-state error, and convergence 

Returning to the 3D-printing example, the system equation is given by:  

𝑇𝑚[𝑛] = (1 − 𝛾𝐾𝑝∆𝑇)𝑇𝑚[𝑛 − 1] + 𝛾∆𝑇𝐾𝑝𝑇𝑑[𝑛 − 1] 

The key question is how should we choose 𝐾𝑝 to construct a “good” controller?  
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First, we can pattern-match to find 𝜆 and 𝑏. We have:  

𝜆 = 1 − 𝛾𝐾𝑝∆𝑇

𝑏 = 𝛾∆𝑇𝐾𝑝𝑇𝑑[𝑛]
 

Here we can assume the desired temperature is constant.  

There are several key metrics we need to consider:  

(1) Stability:  
−1 < 𝜆 < 1

−1 < 1 − 𝛾𝐾𝑝∆𝑇 < 1

2

𝛾∆𝑇
> 𝐾𝑝 > 0

 

For this control problem, Kp must be chosen in the desired range to guarantee system stability 

(that is 𝑇𝑚[∞] is a finite number).  

(2) Steady-state error: 

We can use the steady-state solution to evaluate if there is any steady state error. We have:  

𝑇𝑚[∞] = 𝑦[∞] =
𝑏

1 − 𝜆
=

𝛾∆𝑇𝐾𝑝𝑇𝑑[∞]

1 − (1 − 𝛾𝐾𝑝∆𝑇)
= 𝑇𝑑[∞] 

In this particular problem, 𝑇𝑚[∞] = 𝑇𝑑[∞]. As long as the system is stable, then there is no 

steady-state error. This is only true for this particular example. In the next class, we are going to 

see an example where Kp influences the steady state error.   

(3) Convergence rate: 

Thus far, the two conditions only give us a range of valid Kp. What is the optimal Kp? There are 

many metrics to optimize for. In this example, let’s consider the goal of making the measured 

temperature 𝑇𝑚[𝑛] approach its desired value 𝑇𝑑[𝑛]  as soon as possible. Going back to the 

general solution:  

𝑦[𝑛] =
𝑏

1 − 𝜆
(1 − 𝜆𝑛) 

What if we let 𝜆 = 0? Then we have: 

𝑦[1] =
𝑏

1
(1) = 𝑏 

This is a very nice result because the temperature approaches the desired value in 1 step. This is 

very fast convergence. Realistically, it may be influenced by external noises, and it usually 

requires a large control input. Those tradeoffs are things we need to consider when designing a 

realistic controller.    


