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From Transients to Frequency Responses

To date, we have described systems primarily by their responses to sudden

changes in their input.

Example: step response

t

y(t)

Today we will look at a powerful (and mathematically equivalent) charac-

terization based on sinusoids – the frequency response.



Frequency Response Preview

If a CT system contains only adders, gains, differentiators, and integrators,

then its response to a sinusoidal input will be a sinusoidal output with

• the same frequency,

• possibly different amplitude, and

• possibly different phase angle.

x(t) = cos(ωt)

t

y(t) = M cos(ωt+ φ)

tsystem

These properties of sinusoids result from the CT eigenfunctions est.



Euler’s Formula

Euler’s formula asserts a powerful (and surprising!) relation between real

and complex numbers (Leonhard Euler, 1748):

ejθ = cos θ + j sin θ

Richard Feynman called this ”the most remarkable formula in mathemat-

ics.” The special case θ = π leads to Euler’s Identity:

ejπ + 1 = 0
which relates five fundamental constants

• e: the exponential base

• j: the complex base

• π: the circle number

• 0: the additive identity

• 1: the multiplicative identity

in a single equation.



Where Does Euler’s Formula Come From?

Euler started with the presumption that a constant j whose square is −1
exists and can be manipulated as an ordinary algebraic constant.

Euler showed the relation between complex exponentials and sinusoids by

solving the following differential equation two ways.

d2f(θ)
dθ2 + f(θ) = 0

Let f1(θ) = A cos(αθ) +B sin(βθ)
df1(θ)
dθ

= −αA sin(αθ) + βB cos(βθ)

d2f1(θ)
dθ2 = −α2A cos(αθ)− β2B sin(βθ)

Let α = β = 1

f1(θ) = A cos θ +B sin θ

Let f2(θ) = Ceγθ

df2(θ)
dθ

= γCeγθ

d2f2(θ)
dθ2 = γ2Ceγθ

Let γ2 = −1

f2(θ) = Ce±jθ

If we arbitrarily take f2(θ) = ejθ, then f2(0) = 1 and f ′2(0) = j.

To make f1(θ) = f2(θ), A must be 1 and B must be j:

ejθ = cos θ + j sin θ



Where Does Euler’s Formula Come From?

Euler’s formula also follows from Maclaurin expansion of the exponential

function, assuming the j behaves like any other algebraic constant.

Start with the expansion of the real-valued function:

eθ = 1 + θ + θ2

2! + θ3

3! + θ4

4! + θ5

5! + θ6

6! + θ7

7! + · · ·

Assume that the same expansion holds for complex-valued arguments:

ejθ = 1 + jθ + j2θ2

2! + j3θ3

3! + j4θ4

4! + j5θ5

5! + j6θ6

6! + j7θ7

7! + · · ·

= 1 + jθ − θ2

2! −
jθ3

3! + θ4

4! + jθ5

5! −
θ6

6! −
jθ7

7! + · · ·

=
(

1− θ2

2! + θ4

4! −
θ6

6! + · · ·
)

︸ ︷︷ ︸
cos θ

+j
(
θ − θ3

3! + θ5

5! −
θ7

7! + · · ·
)

︸ ︷︷ ︸
sin θ

Euler’s formula results by splitting the even and odd powers of θ.

ejθ = cos θ + j sin θ



Geometric Interpretation

In 1799, Caspar Wessel was the first to describe complex numbers as points

in the complex plane. Imaginary numbers had been in use since the 1500’s.

c = a+ jb

Re

Im

c

a

b

Complex numbers are fundamentally two dimensional. Unlike other con-

stants (such as π), j =
√
−1 defines an entirely new (imaginary) dimension

– and a new way to think about operations that involve complex numbers.



Euler’s Formula

Euler’s formula equates polar and rectangular descriptions of a unit vector

at angle θ.

ejθ = cos θ + j sin θ

θ
Re

Im

cos θ

sin
θ1

ejθ = cos θ + j sin θ

This construction provides a vector interpretation of complex addition and

a rotation interpretation to complex multiplication.



Geometric Addition

Rules for adding complex numbers are same as those for adding vectors.

Let c1 and c2 represent complex numbers:

c1 = a1 + jb1

c2 = a2 + jb2

Then

c1 + c2 = (a1 + jb1) + (a2 + jb2) = (a1+a2) + j(b1+b2)

Re

Im

a1a2 a1+a2

b1

b2
b1+b2



Geometric Multiplication

The two-dimensional view of complex numbers allows us to think about

multiplication by an imaginary number as a rotation.

Multiplying by j

• rotates 1 to j,

• rotates j to −1,

• rotates −1 to −j, and

• rotates −j to 1.

Re

Im

1

j



Geometric Multiplication

The two-dimensional view of complex numbers allows us to think about

multiplication by an imaginary number as a rotation.
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Geometric Multiplication

The two-dimensional view of complex numbers allows us to think about

multiplication by an imaginary number as a rotation.

Multiplying by j
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Re

Im
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Geometric Multiplication

The two-dimensional view of complex numbers allows us to think about

multiplication by an imaginary number as a rotation.

Multiplying by j

• rotates 1 to j,

• rotates j to −1,

• rotates −1 to −j, and

• rotates −j to 1.

Re

Im

1

−j



Geometric Multiplication

The two-dimensional view of complex numbers allows us to think about

multiplication by an imaginary number as a rotation.

Multiplying by j

• rotates 1 to j,

• rotates j to −1,

• rotates −1 to −j, and

• rotates −j to 1.

Re

Im

1

j

−1

Multiplying by j rotates a vector by π/2.

Multiplying by j2 = −1 rotates a vector by π.



Euler’s Formula

Complex numbers are central to our understanding of Euler’s formula.

ejθ = cos θ + j sin θ

θ
Re

Im

cos θ

sin
θ1

ejθ = cos θ + j sin θ



Check Yourself

Let c represent the complex number shown by a filled dot in the

complex plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of jc?

Which if any of the following figures shows the value of Im(c)?

Which if any of the following figures shows the value of 1/c?

A B C D

E F G H



Check Yourself

Let c represent the complex number shown by a filled dot in the

complex plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of jc?

A B C D

E F G H



Check Yourself

Let c represent the complex number shown by a filled dot in the complex

plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of jc? G

G

|jc| = |c| and ∠(jc) = ∠c+ π/2



Check Yourself

Let c represent the complex number shown by a filled dot in the

complex plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of Im(c)?

A B C D

E F G H



Check Yourself

Let c represent the complex number shown by a filled dot in the complex

plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of Im(c)? F

F

Im(c)= c−c∗
j2 , which is a real number.



Check Yourself

Let c represent the complex number shown by a filled dot in the

complex plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of 1/c?

A B C D

E F G H



Check Yourself

Let c represent the complex number shown by a filled dot in the complex

plane below, where the circle has radius 1.

c

Re

Im

Which if any of the following figures shows the value of 1/c? A

A

|1/c| = 1/|c| and ∠(1/c) = −∠c



Frequency Response

If a CT system contains only adders, gains, differentiators, and integrators,

then its response to a sinusoidal input will be a sinusoidal output with

• the same frequency,

• possibly different amplitude, and

• possibly different phase angle.

x(t) = cos(ωt)

t

y(t) = M cos(ωt+ φ)

tsystem

The frequency response of a system is a plot of the magnitude M and

angle φ as a function of ω = 2πf where f is the frequency in hertz.



Frequency Response

The frequency response is a plot of the magnitude M and angle φ as a

function of ω = 2πf where f is the frequency in hertz.

d2y(t)
dt2

+ dy(t)
dt

+ 37
4 y(t) = 5x(t)

x(t) = cos(ωt) → y(t) = M(ω) cos(ωt+ φ(ω))

ω

M(ω)

0

1

ω

φ(ω)
0

−2π

The frequency response is a natural way to describe many systems.



Example: Mass and Spring

x(t)

y(t)

mass &
spring
system

x(t) y(t)

t t

At low frequencies, the output is approximately equal to the input.

At middle frequencies, the output can get very large. There is a resonance.

At high frequencies, the output is small.



Frequency Response Calculation

A straightforward way to compute a frequency response is to substitute

x(t) = cos(ωt)
into the system’s differential equation and solve for the response y(t).

But there are much easier methods based on our work with eigenfunctions

and system (transfer) functions.



System Function Approach

Start with the definition of the system function as the (complex-valued)

eigenvalue associated with the eigenfunction est.

H(s)est H(s)est

Since s represents an arbitrary complex number, we can subsitute jω for s:

H(s)e jωt H(jω)e jωt

We can similarly substitute −jω for s:

H(s)e−jωt H(−jω)e−jωt

and then use Euler’s formula to determine the response to a cosine:

H(s)cos(ωt) 1
2

(
H(jω)e jωt +H(−jω)e−jωt

)



Real-Valued System Functions

If a system contains only adders, gains, differentiators, and integrators,

then the system function is the ratio of polynomials in s with real-valued

coefficients.

H(s) =
∑

k aks
k∑

k bks
k

H(jω) =
∑

k ak(jω)k∑
k bk(jω)k

H(−jω) =
∑

k ak(−jω)k∑
k bk(−jω)k = H∗(jω)



System Function Approach

Simplifying the expression for the response to a cosine input.

H(s)cos(ωt) 1
2

(
H(jω)e jωt +H(−jω)e−jωt

)
y(t) = 1

2
(
H(jω)ejωt +H(−jω)e−jωt

)
= Re

{
H(jω)ejωt

}
= Re

{
|H(jω)|ej∠H(jω)ejωt

}
= |H(jω)|Re

{
ejωt+j∠H(jω)

}
y(t) = |H(jω)| cos (ωt+ ∠H(jω))

H(s)cos(ωt) |H(jω)| cos (ωt+ ∠H(jω))

M(ω) = |H(jω)|

φ(ω) = ∠H(jω)



Vector Diagrams

The value of H(s) at a point s=s0 can be determined graphically using

vectorial analysis.

Factor the numerator and denominator of the system function to make

poles and zeros explicit.

H(s0) = K
(s0−z0)(s0−z1)(s0−z2) · · ·
(s0−p0)(s0−p1)(s0−p2) · · ·

z0
z0

s0−z0
s0

s-planes0

Each factor in the numerator/denominator corresponds to a vector from a

zero/pole (here z0) to s0, the point of interest in the s-plane.



Vector Diagrams

The value of H(s) at a point s=s0 can be determined by combining the

contributions of the vectors associated with each of the poles and zeros.

H(s0) = K
(s0−z0)(s0−z1)(s0−z2) · · ·
(s0−p0)(s0−p1)(s0−p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(s0)| = |K| |(s0−z0)||(s0−z1)||(s0−z2)| · · ·
|(s0−p0)||(s0−p1)||(s0−p2)| · · ·

The angle is determined by the sum of the angles.

∠H(s0) = ∠K + ∠(s0−z0) + ∠(s0−z1) + · · · −∠(s0−p0)−∠(s0−p1)− · · ·



Vector Diagrams

The frequency response is equal to H(s) at s=jω.

The value of H(s) at a point s=jω can be determined by combining the

contributions of the vectors associated with each of the poles and zeros.

H(jω) = K
(jω−z0)(jω−z1)(jω−z2) · · ·
(jω−p0)(jω−p1)(jω−p2) · · ·

The magnitude is determined by the product of the magnitudes.

|H(jω)| = |K| |(jω−z0)||(jω−z1)||(jω−z2)| · · ·
|(jω−p0)||(jω−p1)||(jω−p2)| · · ·

The angle is determined by the sum of the angles.

∠H(jω) = ∠K + ∠(jω−z0) + ∠(jω−z1) + · · · −∠(jω−p0)−∠(jω−p1)− · · ·



Vector Diagrams

s-plane

σ

ω
5

−5

5−5

H(s) = s− z1

−5 0 5

5
|H(jω)|

−5 5

π/2

−π/2

∠H(jω)
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What is Negative Frequency?

Negative frequencies are needed to construct sinusoids from complex ex-

ponentials.

e jωt = cos(ωt) + j sin(ωt)

e−jωt = cos(ωt)− j sin(ωt)

cos(ωt) = 1
2
(
e jωt + e−jωt

)
Negative frequencies are not physical. They are mathematical constructs

to facilitate the use of complex exponentials.
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Check Yourself

Sketch the magnitude and angle of the frequency response of the mass,

spring, and dashpot system.

x(t)

y(t)

F = Ma = Mÿ(t) = K(x(t)− y(t))−Bẏ(t)

Mÿ(t) +Bẏ(t) +Ky(t) = Kx(t)

(s2M + sB +K) Y (s) = KX(s)

H(s) = K

s2M + sB +K
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Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

Which (if any) of the following are true?

1. the homogeneous solutions for both systems are oscillatory

2. both systems are stable

3. the homogeneous solutions for both systems converge to 0



Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

The response of the discrete system (pn) is a decaying oscillation.

n

Re(pn1 )

The response of the continuous system (ept) is a growing oscillation.

t

Re(ep1t)

The responses of the discrete and continuous systems are different because

the functional dependence on the poles is different.



Check Yourself

Compare two systems that each have poles as 1+j
2 and 1−j

2 :

H(z) = 1
z2 − z − 1

2
and H(s) = 1

s2 − s− 1
2

Which (if any) of the following are true? 1

1. the homogeneous solutions for both systems are oscillatory
√

2. both systems are stable X

3. the homogeneous solutions for both systems converge to 0 X



Check Yourself

Today we studied the frequency response of a CT system.

Our most important result is that the frequency response is easily

determined from the system function.

H(s)cos(ωt) |H(jω)| cos (ωt+ ∠H(jω))

The frequency response is equal to the magnitude and angle of the

system function H(s) evaluated at s = jω: H(s)
∣∣∣
s=jω

What is the analogous statement for a DT system?



Check Yourself

Today we studied the frequency response of a CT system.

Our most important result is that the frequency response is easily deter-

mined from the system function.

Hct(s)cos(ωt) |Hct(jω)| cos (ωt+ ∠Hct(jω))

The frequency response is equal to the magnitude and angle of the system

function Hct(s) evaluated at s = jω: Hct(s)
∣∣∣
s=jω

For DT systems

Hdt(z)cos(Ωn) |Hdt(ejΩ)| cos (Ωn+ ∠Hdt(ejΩ)

The frequency response is equal to the magnitude and angle of the system

function Hdt(s) evaluated at z = ejΩ: Hdt(z)
∣∣∣
z=ejΩ

The frequency response of a CT system is on the jω-axis.

The frequency response of a DT system is on the unit circle.



Summary

Today we developed the idea of a frequency response as an alternative way

to describe the behavior of a system.

Next week we will see that the frequency responses provide a new way to

think about the design of control systems.


