Gain Margins, Phase Margins, and Lead Compensation
Controller Design

Goal: Given a system $H(s)$ (the plant), design a controller $K(s)$ to achieve some set of performance goals.

$$\begin{align*}
X & \rightarrow + \rightarrow K(s) \rightarrow H(s) \rightarrow Y = G(s)X
\end{align*}$$

The goals may be specified in the time domain and/or frequency domain.

The time domain objectives include:
- overshoot
- steady-state
- convergence

The frequency domain objectives include:
- $|G(j\omega)|$
- Q
- ω_r
To date, we have focused on PID controllers. All of our controllers included a proportional term. Adding a derivative term can increase stability. Adding an integral term can decrease steady-state errors. Derivative and integral are time-domain descriptions. Today: focus on frequency-domain representations of controllers.
Check Yourself

Consider the magnitude of the frequency responses of four possible controllers.

Which could correspond to a PID controller?

\[K(s) = K_p + sK_d + \frac{K_i}{s} \]
Consider the magnitude of the frequency responses of four possible controllers.

\[
K(s) = K_p + sK_d + \frac{K_i}{s}
\]

If \(K_d\) is nonzero, then the frequency response is large at high frequencies.
If \(K_i\) is nonzero, then the frequency response is large at low frequencies.
\(\rightarrow K_2(s)\)
Check Yourself

Consider the magnitude of the frequency responses of four possible controllers.

\[
|K_1(s)|_{[\text{dB}]} \\
0 \quad 0 \quad 1 \quad 10 \quad 100 \quad \omega \text{ [log]}
\]

\[
|K_2(s)|_{[\text{dB}]} \\
0 \quad 0 \quad 1 \quad 10 \quad 100 \quad \omega \text{ [log]}
\]

\[
|K_3(s)|_{[\text{dB}]} \\
0 \quad 0 \quad 1 \quad 10 \quad 100 \quad \omega \text{ [log]}
\]

\[
|K_4(s)|_{[\text{dB}]} \\
0 \quad 0 \quad 1 \quad 10 \quad 100 \quad \omega \text{ [log]}
\]

Which could correspond to a PID controller? 2

\[
K(s) = K_p + sK_d + \frac{K_i}{s}
\]

Are there other useful types of controllers?
Stability Criteria

To be useful, a controller must make the closed-loop system stable.

\[X \rightarrow + \rightarrow K_p \rightarrow H(s) \rightarrow Y \]

Under what conditions will the closed-loop system be stable?
Check Yourself

To be useful, a controller must make the closed-loop system stable.

\[G(s) = \frac{Y}{X} \]

Which (if any) of the following statements are true?

- If \(H(s) \) has a pole in the right-half plane, then \(G(s) \) is unstable.
- If \(H(s) \) has just two poles (\(s = \pm j\omega_0 \)), \(G(s) \) will be stable if \(K_p > 1 \).
- If \(K_p H(s) = -1 \) for \(s = j\omega_0 \), then the system cannot be stable.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

Can the closed-loop system be stable if $H(s)$ has a pole in the right-half plane?

Try a simple example: $H(s)$ has a single pole at $s = 1$.

$$H(s) = \frac{1}{s - 1}$$

$$G(s) = \frac{Y}{X} = \frac{\frac{K_p}{s-1}}{1 + \frac{K_p}{s-1}} = \frac{K_p}{s - 1 + K_p}$$

The closed-loop pole $s = 1 - K_p$ will be in the left half plane if $K_p > 1$.

→ The closed-loop system can be stable even if the open-loop system is unstable.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

\[X \rightarrow \begin{array}{c} + \end{array} \rightarrow \begin{array}{c} K_p \end{array} \rightarrow \begin{array}{c} H(s) \end{array} \rightarrow Y \]

\[G(s) = \frac{Y}{X} \]

Which (if any) of the following statements are true?

- If \(H(s) \) has a pole in the right-half plane, then \(G(s) \) is unstable. \(\times \)
- If \(H(s) \) has just two poles \((s=\pm j\omega_0)\), \(G(s) \) will be stable if \(K_p > 1 \).
- If \(K_pH(s) = -1 \) for \(s = j\omega_0 \), then the system cannot be stable.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

Can the closed-loop system be stable if $H(s)$ has poles at $s = \pm j\omega_0$?

\[
H(s) = \frac{1}{(s - j\omega_0)(s + j\omega_0)} = \frac{1}{s^2 + \omega_0^2}
\]

\[
G(s) = \frac{Y}{X} = \frac{\frac{K_p}{s^2 + \omega_0^2}}{1 + \frac{K_p}{s^2 + \omega_0^2}} = \frac{K_p}{s + \omega_0^2 + K_p}
\]

If $K_p > 1$ the closed-loop poles are on the $j\omega$ axis.

\rightarrow The system is unstable for $K_p > 1$. Feedback did not stabilize this system.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

\[G(s) = \frac{Y}{X} \]

Which (if any) of the following statements are true?

- If \(H(s) \) has a pole in the right-half plane, then \(G(s) \) is unstable. \(\times \)
- If \(H(s) \) has just two poles \((s=\pm j\omega_0) \), \(G(s) \) will be stable if \(K_p > 1 \). \(\times \)
- If \(K_p H(s) = -1 \) for \(s = j\omega_0 \), then the system cannot be stable.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

Can the system be stable if \(K_pH(j\omega_0) = -1 \)?

\[
G(j\omega_0) = \frac{K_pH(j\omega_0)}{1 + K_pH(j\omega_0)} = \frac{-1}{1 - 1} \to \infty
\]

The system has a pole on the \(j\omega \) axis. The system cannot be stable.
Check Yourself

To be useful, a controller must make the closed-loop system stable.

\[G(s) = \frac{Y}{X} \]

Which (if any) of the following statements are true?

- If \(H(s) \) has a pole in the right-half plane, then \(G(s) \) is unstable. \(\times \)
- If \(H(s) \) has just two poles \((s = \pm j\omega_0) \), \(G(s) \) will be stable if \(K_p > 1 \). \(\times \)
- If \(K_p H(s) = -1 \) for \(s = j\omega_0 \), then the system cannot be stable. \(\sqrt \)

This last condition is the basis of lead compensation (today) and root locus methods (next time).
Determining Stability from Open-Loop Frequency Response

There is a closed-loop pole at every frequency ω_0 for which $K_p H(j\omega_0) = -1$.

From Black’s equation,

$$ G(j\omega_0) = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)} $$

If $K_p H(j\omega_0) = -1$, then $|G(j\omega_0)| \to \infty$

But $G(s)$ can also be written as a ratio of first-order factors:

$$ G(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots}{(s - p_1)(s - p_2)(s - p_3) \cdots} $$

and if $G(s) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system $G(s)$ must have a pole at $s = j\omega_0$.
Determining Stability from Open-Loop Frequency Response

Consider the frequency response of an open-loop system $H(s) = \frac{1}{s(s+1)(s+5)}$.

Is there a frequency ω at which $H(j\omega) = -1$?
Determining Stability from Open-Loop Frequency Response

Consider the frequency response of an open-loop system $H(s) = \frac{1}{s(s+1)(s+5)}$.

$H(j\omega) = -1$? No. $|H(j\omega_1)| = 1$ and $\angle(H(j\omega_2)) = -\pi$ but $\omega_1 \neq \omega_2$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0)) = -\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 1$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 2$

![Graph showing the magnitude and phase of $H(j\omega)$, and a closed-loop step response.]
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 5$

- K_p versus ω [log scale]
- $|H(j\omega)|$ [dB] versus ω [log scale]
- $\angle(H(j\omega))$ [rad.], ω [log scale]

Closed-loop step response:

- t [s] from 0 to 15
Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 10$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 20$

![Graph showing magnitude and phase of $H(j\omega)$ against frequency on a log scale.](image)

![Graph showing closed-loop step response against time.](image)
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 30$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0)) = -\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 32$

![Diagram of frequency response and step response](image-url)
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 33$

<table>
<thead>
<tr>
<th>K_p</th>
<th>$H(j\omega)$</th>
<th>dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-40</td>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td>-60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ω [log scale]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 0.1 1 10 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\angle(H(j\omega))$ [rad.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 $-\pi/2$ $-\pi$ $-3\pi/2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ω [log scale]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 0.1 1 10 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 5 10 15</td>
</tr>
</tbody>
</table>

closed-loop step response
Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 1$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 2$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0)) = -\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 5$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 10$

![Graph showing Bode plots for frequency response and closed-loop step response]
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0))$ is $-\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 20$

![Gain margin and phase margin diagrams](image_url)

Closed-loop step response.
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0)) = -\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise.

$K_p = 30$

![Graph showing Bode plots and step response](image)
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $\angle(H(j\omega_0)) = -\pi$. The system will be stable if the magnitude of $H(j\omega_0)$ is less than 1 and unstable otherwise. $K_p = 32$

![Graph showing gain margin and phase response]
Determining Stability from Open-Loop Frequency Response

Let \(\omega_0 \) represent the frequency where \(\angle(H(j\omega_0)) = -\pi \). The system will be stable if the magnitude of \(H(j\omega_0) \) is less than 1 and unstable otherwise.

\[K_p = 33 \]

\[\begin{align*}
\text{Gain Margin} \quad \omega \text{ [log scale]} \\
\text{Closed-loop Step Response} \quad t \text{ [s]}
\end{align*} \]
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_p = 1$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_p = 2$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_p = 5$
Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise.

$K_p = 10$
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_p = 20$

\[\begin{align*}
|H(j\omega)| &\quad \text{[dB]} \\
K_p &\quad \omega \quad \text{[log scale]} \\
\angle(H(j\omega)) &\quad \text{[rad.]} \\
\omega \quad \text{[log scale]} &\quad 0.01 \\
&\quad 0.1 \\
&\quad 1 \\
&\quad 10 \\
&\quad 100 \\
\end{align*}\]
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise.

$k_p = 30$

[Graphs showing $K_p |H(j\omega)|$ in dB, $\angle H(j\omega)$ in rad, and closed-loop step response.]
Determining Stability from Open-Loop Frequency Response

Let \(\omega_0 \) represent the frequency where \(|H(j\omega_0)| = 1 \). The system will be stable if the angle of \(H(j\omega_0) \) is greater than \(-\pi\) and unstable otherwise.

\[K_p = 32 \]
Determining Stability from Open-Loop Frequency Response

Let ω_0 represent the frequency where $|H(j\omega_0)| = 1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise.

$K_p = 33$

![Graph showing Bode plot and Nyquist plot with phase margin indicated.](image-url)
Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 1 \]

- **Gain margin**
 \[\left| K_p \right| = \frac{1}{\omega} \text{[dB]} \]
 \[ω \text{[log scale]} \]

- **Phase margin**
 \[\angle \left(\frac{1}{H(jω)} \right) \] [rad.]
 \[ω \text{[log scale]} \]

Closed-loop step response
Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 2 \]

Gain Margin

- \(K_p \) vs \(\log{\omega} \)
- \(|H(j\omega)| \) in [dB]

Phase Margin

- \(\angle(H(j\omega)) \) in [rad.]
- \(\log{\omega} \)

Closed-Loop Step Response

- \(t \) in [s]
- \(t \) range: 0 to 15

Graphical Illustration

- Gain margin:
 - Frequency range: \(0.01 \) to \(100 \)
 - DB scale: \(-40\) to \(-60\)
- Phase margin:
 - Frequency range: \(0.01 \) to \(100 \)
 - Radian scale: \(-3\pi/2\) to \(-\pi\)
Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 5 \]
Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 10 \]

![Graph showing gain and phase margins with open-loop frequency response and closed-loop step response.](image)
Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\(K_p = 20 \)

[Graph of open-loop frequency response showing gain margin and phase margin]

[Graph of closed-loop step response]
Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 30 \]
Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 32 \]

![Gain and phase margin diagram](image)

- **Gain Margin**: \[|K_p| H(j\omega) \] dB
- **Phase Margin**: \(\angle \left(H(j\omega) \right) \) rad.

![Closed-loop step response](image)

- **Closed-loop Step Response**: Time response of the system.
Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be computed directly from the open-loop frequency response.

\[K_p = 33 \]

![Gain Margin](image1)

![Phase Margin](image2)

![Closed-Loop Step Response](image3)
Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using a compensator as shown below.

We can use a lead compensator to increase the phase margin.

\[L(s) = \left(\frac{p}{z} \right) \left(\frac{s + z}{s + p} \right) \]
A lead compensator has no effect on the magnitude or phase at low frequencies.

\[L(s) = \left(\frac{p}{z} \right) \left(\frac{s + z}{s + p} \right) \]
A lead compensator can significantly increase phase margin (which is good). Unfortunately, it also reduces the gain margin a bit (which is not so good).

\[L(s) = \left(\frac{p}{z} \right) \left(\frac{s+z}{s+p} \right) \]

When adjusted appropriately, the increase in phase margin can more than compensate for the slight loss of gain margin.
Improving Performance with Lead Compensation

Using a lead compensator with $z = 20$ and $p = 200$ has a very small effect. $K_p = 20
\omega$ [log scale] $\angle [\text{rad.}]
\omega$ [log scale]
closed-loop step response
Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

\[K_p = 20 \]
\[z = 10; \quad p = 100 \]
Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.

\[K_p = 20 \]
\[z = 5; \quad p = 50 \]
Convergence is dramatically improved when $z = 2$ and $p = 20$.

$K_p = 20$

$z = 2; \quad p = 20$
Improving Performance with Lead Compensation

Convergence for $z = 1$ not as good as $z = 2$ — now losing gain margin.

$K_p = 20$

$z = 1; \ p = 10$

![Graphs showing Bode plots and closed-loop step response for different values of z.](image-url)
Improving Performance with Lead Compensation

The loss of gain margin is severe when $z = 0.5$.

$K_p = 20$

$z = 0.5; \quad p = 5$

![Graphs showing Bode plots and a closed-loop step response.](image)
Improving Performance with Lead Compensation

The loss of gain margin is severe when $z = 0.4$.

$K_p = 20$

$z = 0.4; \quad p = 4$

![Graph showing the Bode plots and closed-loop step response for a system with lead compensation.](image)
Improving Performance with Lead Compensation

The loss of gain margin is severe when $z = 0.35$.

$K_p = 20$

$z = 0.35; \quad p = 3.5$

![Graph showing frequency response](image)

![Closed-loop step response](image)
Improving Performance with Lead Compensation

The system is unstable when \(z = 0.34 \).

\[K_p = 20 \]

\(z = 0.34; \quad p = 3.4 \)
Check Yourself

What is the relation (if any) between lead compensation and PD control?

Lead compensation and PD control are ...
- equivalent if the zero in the lead compensator is at infinity
- equivalent if the pole in the lead compensator is at infinity
- equivalent if the zero in the lead compensator is at \(-\frac{K_p}{K_d}\)
- equivalent if the zero in the lead compensator is at \(-\frac{K_p}{K_d}\) and the pole in the lead compensator is at infinity
- never equivalent
Check Yourself

PID control

![PID Control Graph](image)

lead compensation

![Lead Compensation Graph](image)
Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let ω_0 represent the frequency at which the open-loop phase is $-\pi$. The closed loop system will be stable if the magnitude of the open-loop system at ω_0 is less than 1.

Useful metrics for characterizing relative stability:

- gain margin: ratio of the maximum stable gain to the current gain
- phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin (while also decreasing gain margin slightly).

Next time: root-locus method.