6.3100: Dynamic System Modeling and Control Design

Gain Margins, Phase Margins, and Lead Compensation

March 18, 2024



Controller Design

Goal: Given a system H(s) (the plant), design a controller K(s) to achieve
some set of performance goals.
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The goals may be specified in the time domain
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PID Controllers

To date, we have focused on PID controllers.
All of our controllers included a proportional term.
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Adding a derivative term can increase stability.
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Adding an integral term can decrease steady-state errors.
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Derivative and integral are time-domain descriptions.
Today: focus on frequency-domain representations of controllers.



Check Yourself
Consider the magnitude of the frequency responses of four possible

controllers.
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Which could correspond to a PID controller?
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Check Yourself
Consider the magnitude of the frequency

responses of four possible con-
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If K, is nonzero, then the frequency response is large at high frequencies.
If K; is nonzero, then the frequency response is large at low frequencies.
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Check Yourself
Consider the magnitude of the frequency responses of four possible
controllers.

Which could correspond to a PID controller? 2
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Are there other useful types of controllers?




Stability Criteria

To be useful, a controller must make the closed-loop system stable.
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Under what conditions will the closed-loop system be stable?



Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y

[ Which (if any) of the following statements are true? }

e If H(s) has a pole in the right-half plane, then G(s) is unstable.
e If H(s) has just two poles (s= = jwy), G(s) will be stable if K,>1.
o If K,H(s)=—1 for s = jwp, then the system cannot be stable.




Check Yourself
To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y
T_

Can the closed-loop system be stable if H(s) has a pole in the right-half
plane?

Try a simple example: H(s) has a single pole at s = 1.

Y =1 Kp

G(S) = —_— = 124 =
X 1+ s—ipl s—1+ Kp
The closed-loop pole s = 1 — K, will be in the left half plane if K, > 1.

— The closed-loop system can be stable even if the open-loop system is

unstable.



Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y

[ Which (if any) of the following statements are true? }

e If H(s) has a pole in the right-half plane, then G(s) is unstable. X
e If H(s) has just two poles (s= = jwy), G(s) will be stable if K,>1.
o If K,H(s)=—1 for s = jwp, then the system cannot be stable.




Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y
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Can the closed-loop system be stable if H(s) has poles at s = +jwg?
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If K,>1 the closed-loop poles are on the jw axis.

— The system is unstable for Kp>1. Feedback did not stabilize this system.



Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y

[ Which (if any) of the following statements are true? }

e If H(s) has a pole in the right-half plane, then G(s) is unstable. X
e If H(s) has just two poles (s==%jwp), G(s) will be stable if K,>1. X
o If K,H(s)=—1 for s = jwp, then the system cannot be stable.




Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y
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Can the system be stable if K,H (jwy)=—17
4 K,H (jwo) -1
G = p =
o) = T i)~ 1=1

The system has a pole on the jw axis. The system cannot be stable.
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Check Yourself

To be useful, a controller must make the closed-loop system stable.

X—»@—» H(s) > Y

[ Which (if any) of the following statements are true? }

e If H(s) has a pole in the right-half plane, then G(s) is unstable. X
e If H(s) has just two poles (s==%jwp), G(s) will be stable if K,>1. X
o If K,H(s) =—1 for s = jwp, then the system cannot be stable. v

This last condition is the basis of lead compensation (today) and root locus
methods (next time).



Determining Stability from Open-Loop Frequency Response

There is a closed-loop pole at every frequency wqg for which KpH(jwo) = —1.
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From Black’'s equation,
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If KpH(jwo) = —1, then |G(jwo)| = oo

But G(s) can also be written as a ratio of first-order factors:
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and if G(s) — oo then jwy is a root of the denominator.
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The closed-loop system G(s) must have a pole at s = jwy.



Determining Stability from Open-Loop Frequency Response

Consider the frequency response of an open-loop system H(s) = m

Is there a frequency w at which H(jw) = —17
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Determining Stability from Open-Loop Frequency Response

Consider the frequency response of an open-loop system H(s) = m

H(jw)=-17 No. |H(jw1)| =1 and £(H (jwz) = —7 but w; # wo
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
K,=1

o
I, 40
B
=yl
N i
—60-, . . . » w [log scale]
_ 01 \
g
£ i 0O 5 10 15
//3? closed-loop
N —7 A step response
e
SN~—
N —3m/2-

T T T 1 W [|Og Scale]
0.01 0.1 1 10 100



Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

K, = 32
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where Z(H (jwp) is —m. The system will be
stable if the magnitude of H(jwp) is less than 1 and unstable otherwise.

gain margin
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Let wp represent the frequency where |H(jwo)| = 1. The system will be
stable if the angle of H(jwy) is greater than —m and unstable otherwise.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.

gain margin
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-

puted directly from the open-loop frequency response.

gain margin
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Determining Stability from Open-Loop Frequency Response

Gain and phase margins provide useful stability metrics that can be com-
puted directly from the open-loop frequency response.
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Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using
a compensator as shown below.
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We can use a lead compensator to increase the phase margin.

wo= () (35)

v
<

= _ 20

= 0 . . . . - w [log scale]
z b

3 _7m/4

S O

3 0 }

TT 0 W [log scale]



Lead Compensation

A lead compensator has no effect on the magnitude or phase at low fre-
quencies.
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Lead Compensation

A lead compensator can significantly increase phase margin (which is good).
Unfortunately, it also reduces the gain margin a bit (which is not so good).

L(s) = (3
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When adjusted appropriately, the increase in phase margin can more than
compensate for the slight loss of gain margin.



Improving Performance with Lead Compensation

Using a lead compensator with z = 20 and p = 200 has a very small effect.
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z=20; p=200
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.
K, =20
z=10; p =100
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Improving Performance with Lead Compensation

Moving the compensator to a lower frequency increases convergence rate.
K, =20

z=1>5; p=2>50
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Improving Performance with Lead Compensation

Convergence is dramatically improved when z =2 and p = 20.
K, =20

z=2; p=20
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Improving Performance with Lead Compensation

Convergence for z =1 not as good as z =2 — now losing gain margin.
K, =20

z=1; p=10
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.5.

K, =20

z=0.5; p=5
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.4.

K, =20
z2=04; p=4
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Improving Performance with Lead Compensation

The loss of gain margin is severe when z = 0.35.
K, =20
z=0.35 p=35
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Improving Performance with Lead Compensation

The system is unstable when z = 0.34.
K, =20
z2=0.34; p=34
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Check Yourself

What is the relation (if any) between lead compensation and
PD control?

Lead compensation and PD control are ...

e equivalent if the zero in the lead compensator is at infinity

e equivalent if the pole in the lead compensator is at infinity

e equivalent if the zero in the lead compensator is at —K,,/ K,

e equivalent if the zero in the lead compensator is at —K,/Ky and
the pole in the lead compensator is at infinity

e never equivalent




Check Yourself

PID control

lead compensation
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Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let wg represent the frequency at which the open-loop
phase is —mw. The closed loop system will be stable if the magnitude of the
open-loop system at wy is less than 1.

Useful metrics for characterizing relative stability:
e gain margin: ratio of the maximum stable gain to the current gain
e phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin
(while also decreasing gain margin slightly).

Next time: root-locus method.



