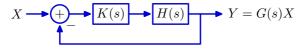
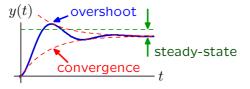
6.3100: Dynamic System Modeling and Control Design Gain Margins, Phase Margins, and Lead Compensation

Controller Design

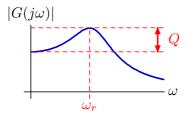
Goal: Given a system H(s) (the plant), design a controller K(s) to achieve some set of performance goals.



The goals may be specified in the time domain



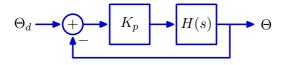
and/or frequency domain.



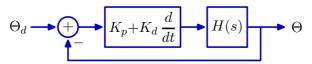
PID Controllers

To date, we have focused on PID controllers.

All of our controllers included a proportional term.



Adding a derivative term can increase stability.



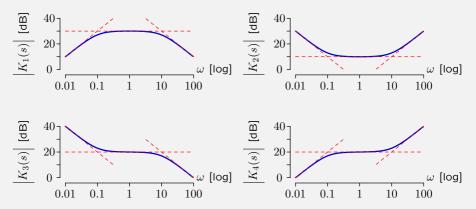
Adding an integral term can decrease steady-state errors.

$$\Theta_d \longrightarrow \bigoplus_{-} K_p + K_d \frac{d}{dt} + K_i \int dt \longrightarrow H(s) \longrightarrow \Theta$$

Derivative and integral are time-domain descriptions.

Today: focus on **frequency-domain** representations of controllers.

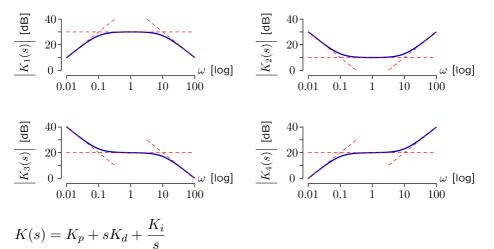
Consider the magnitude of the frequency responses of four possible controllers.



Which could correspond to a PID controller?

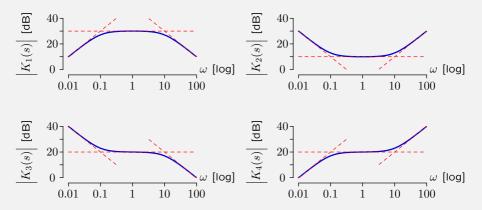
$$K(s) = K_p + sK_d + \frac{K_i}{s}$$

Consider the magnitude of the frequency responses of four possible controllers.



If K_d is nonzero, then the frequency response is large at high frequencies. If K_i is nonzero, then the frequency response is large at low frequencies. $\to K_2(s)$

Consider the magnitude of the frequency responses of four possible controllers.

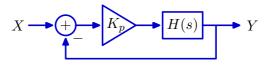


Which could correspond to a PID controller? 2
$$K(s) = K_p + sK_d + \frac{K_i}{s} \label{eq:Ks}$$

Are there other useful types of controllers?

Stability Criteria

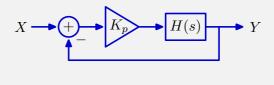
To be useful, a controller must make the closed-loop system stable.



Under what conditions will the closed-loop system be stable?

 $G(s) = \frac{Y}{Y}$

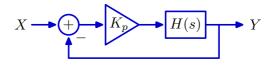
To be useful, a controller must make the closed-loop system stable.



Which (if any) of the following statements are true?

- If H(s) has a pole in the right-half plane, then G(s) is unstable.
- If H(s) has just two poles $(s=\pm j\omega_0)$, G(s) will be stable if $K_p{>}1$.
- If $K_pH(s)=-1$ for $s=j\omega_0$, then the system cannot be stable.

To be useful, a controller must make the closed-loop system stable.



Can the closed-loop system be stable if H(s) has a pole in the right-half plane?

Try a simple example: H(s) has a single pole at s=1.

$$H(s) = \frac{1}{s-1}$$

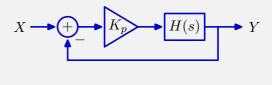
$$G(s) = \frac{Y}{X} = \frac{\frac{Kp}{s-1}}{1 + \frac{Kp}{s-1}} = \frac{K_p}{s-1 + K_p}$$

The closed-loop pole $s=1-K_p$ will be in the left half plane if $K_p>1$.

ightarrow The closed-loop system can be stable even if the open-loop system is unstable.

 $G(s) = \frac{Y}{Y}$

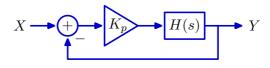
To be useful, a controller must make the closed-loop system stable.



Which (if any) of the following statements are true?

- If H(s) has a pole in the right-half plane, then G(s) is unstable. X
- If H(s) has just two poles $(s=\pm j\omega_0)$, G(s) will be stable if $K_p{>}1$.
- If $K_pH(s)=-1$ for $s=j\omega_0$, then the system cannot be stable.

To be useful, a controller must make the closed-loop system stable.



Can the closed-loop system be stable if H(s) has poles at $s=\pm j\omega_0$?

$$H(s) = \frac{1}{(s - j\omega_0)(s + j\omega_0)} = \frac{1}{s^2 + \omega_0^2}$$

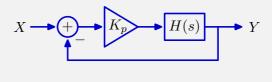
$$G(s) = \frac{Y}{X} = \frac{\frac{K_p}{s^2 + \omega_0^2}}{1 + \frac{K_p}{s^2 + \omega_0^2}} = \frac{K_p}{s + \omega_0^2 + K_p}$$

If $K_p>1$ the closed-loop poles are on the $j\omega$ axis.

 \rightarrow The system is unstable for $K_p{>}1$. Feedback did not stabilize this system.

 $G(s) = \frac{Y}{Y}$

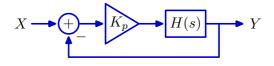
To be useful, a controller must make the closed-loop system stable.



Which (if any) of the following statements are true?

- If H(s) has a pole in the right-half plane, then G(s) is unstable. X
- If H(s) has just two poles $(s=\pm j\omega_0)$, G(s) will be stable if $K_p>1$. X
- If $K_pH(s)=-1$ for $s=j\omega_0$, then the system cannot be stable.

To be useful, a controller must make the closed-loop system stable.



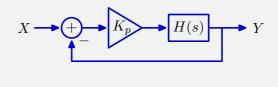
Can the system be stable if $K_pH(j\omega_0) = -1$?

$$G(j\omega_0) = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)} = \frac{-1}{1 - 1} \to \infty$$

The system has a pole on the $j\omega$ axis. The system cannot be stable.

 $G(s) = \frac{Y}{Y}$

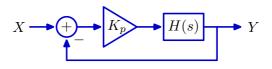
To be useful, a controller must make the closed-loop system stable.



- If H(s) has a pole in the right-half plane, then G(s) is unstable. \times
- If H(s) has just two poles $(s=\pm j\omega_0)$, G(s) will be stable if $K_p>1$. X
- If $K_pH(s)=-1$ for $s=j\omega_0$, then the system cannot be stable.

This last condition is the basis of lead compensation (today) and root locus methods (next time).

There is a closed-loop pole at every frequency ω_0 for which $K_pH(j\omega_0)=-1$.



From Black's equation,

$$G(j\omega_0) = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}$$

If
$$K_pH(j\omega_0)=-1$$
, then $|G(j\omega_0)|\to\infty$

But G(s) can also be written as a ratio of first-order factors:

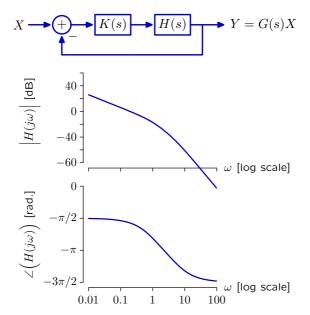
$$G(s) = K \frac{(s - z_1)(s - z_2)(s - z_3) \cdots}{(s - p_1)(s - p_2)(s - p_3) \cdots}$$

and if $G(s) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system G(s) must have a pole at $s=j\omega_0$.

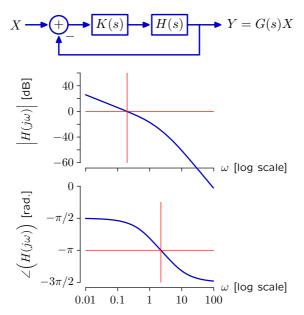
Consider the frequency response of an open-loop system $H(s) = \frac{1}{s(s+1)(s+5)}$.

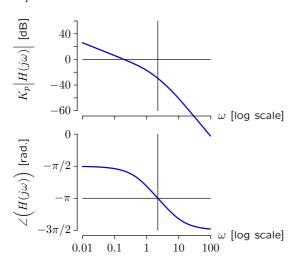
Is there a frequency ω at which $H(j\omega) = -1$?

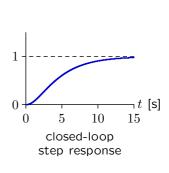


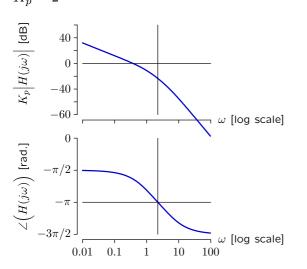
Consider the frequency response of an open-loop system $H(s) = \frac{1}{s(s+1)(s+5)}$.

$$H(j\omega)=-1$$
? No. $|H(j\omega_1)|=1$ and $\angle(H(j\omega_2)=-\pi$ but $\omega_1\neq\omega_2$

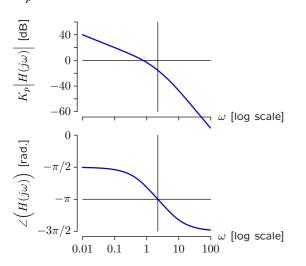


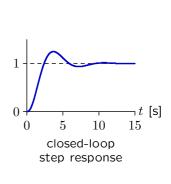


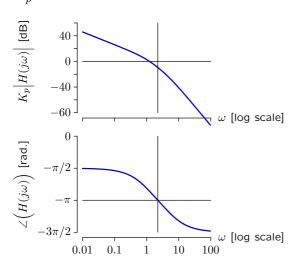


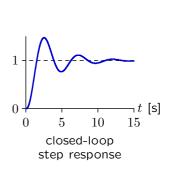


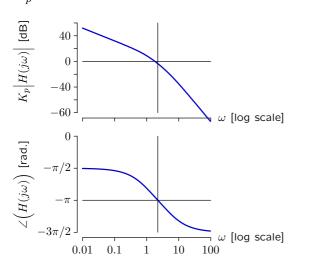


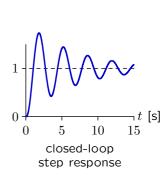


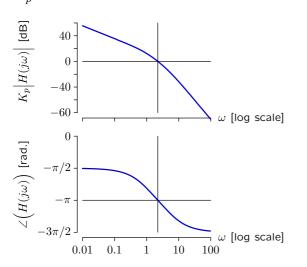


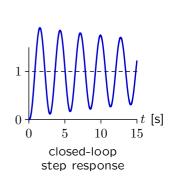


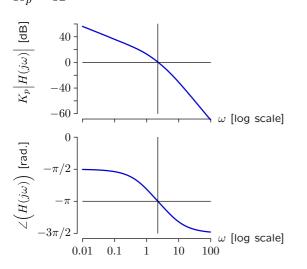


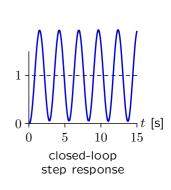


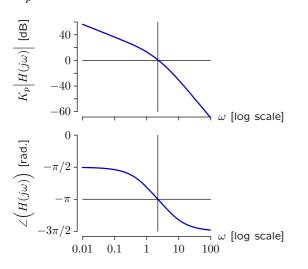


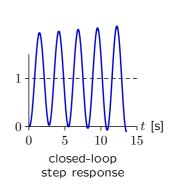


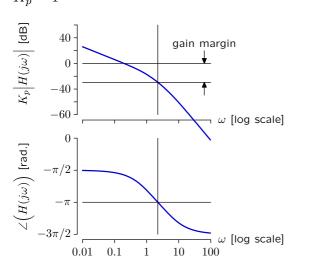


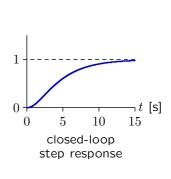


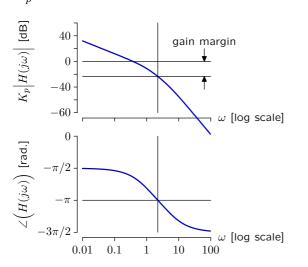


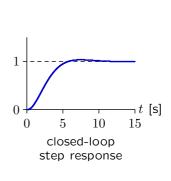


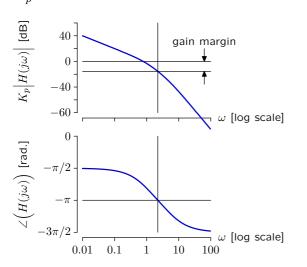


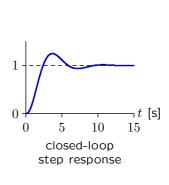


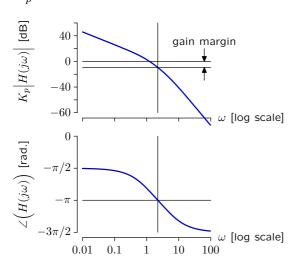


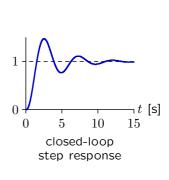


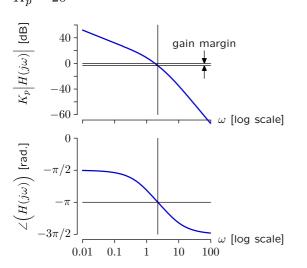


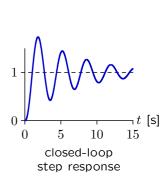


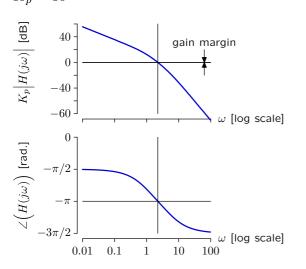


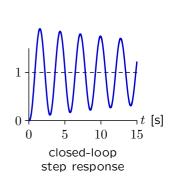


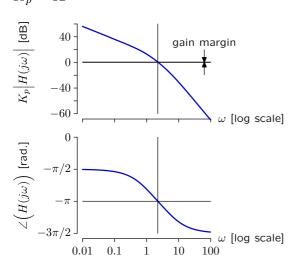


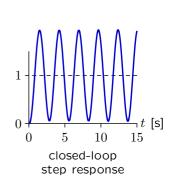


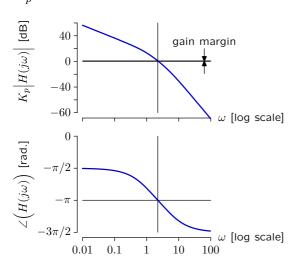


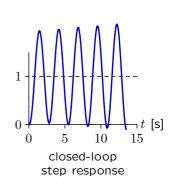




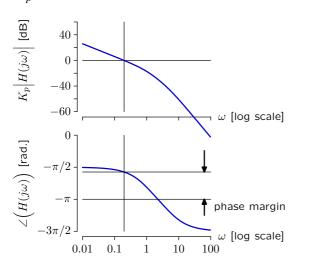


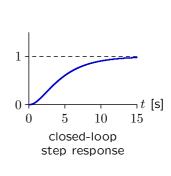




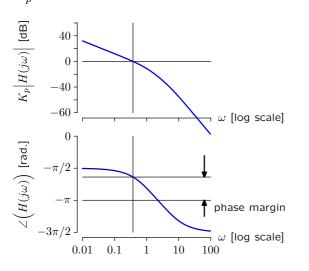


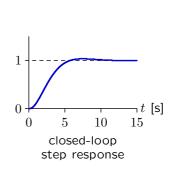
Let ω_0 represent the frequency where $|H(j\omega_0)|=1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_v=1$



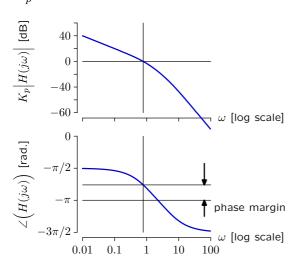


Let ω_0 represent the frequency where $|H(j\omega_0)|=1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_v=2$

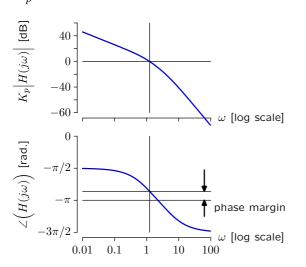


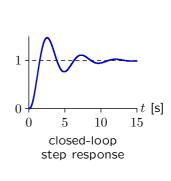


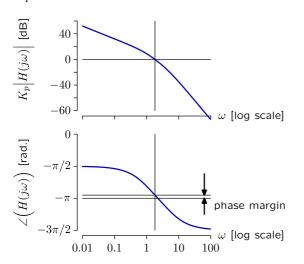
Let ω_0 represent the frequency where $|H(j\omega_0)|=1$. The system will be stable if the angle of $H(j\omega_0)$ is greater than $-\pi$ and unstable otherwise. $K_v=5$

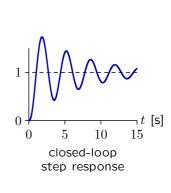


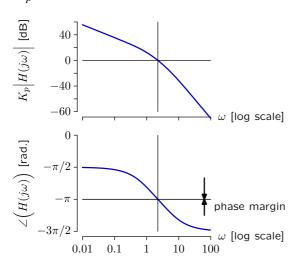


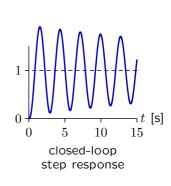


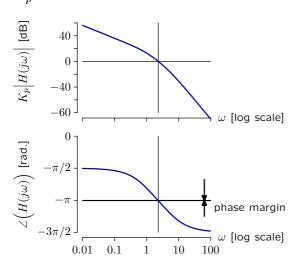


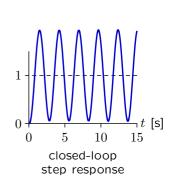


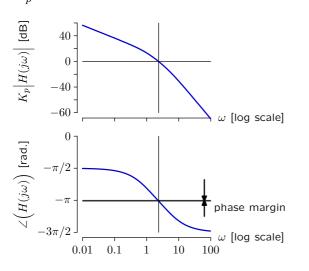


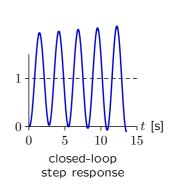




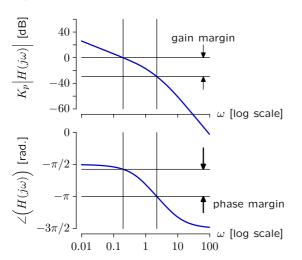


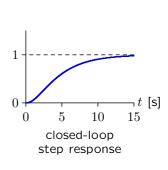




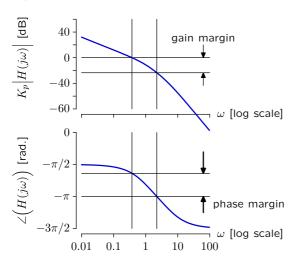


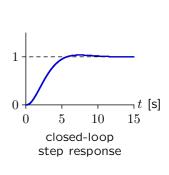
$$K_p = 1$$



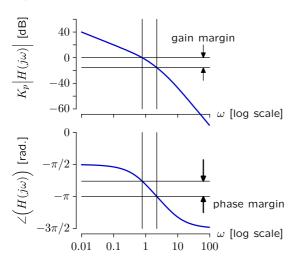


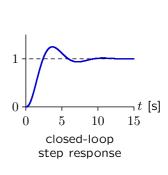
$$K_p = 2$$



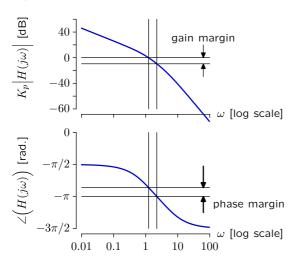


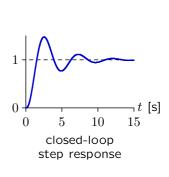
$$K_p = 5$$



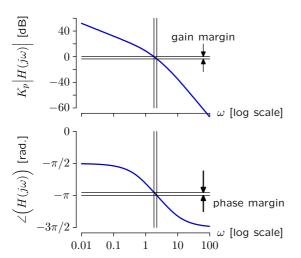


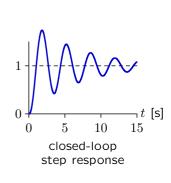
$$K_p = 10$$



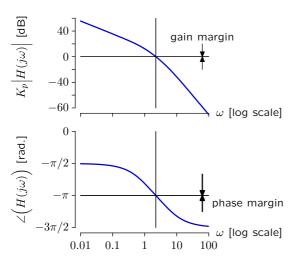


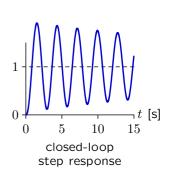
$$K_p = 20$$



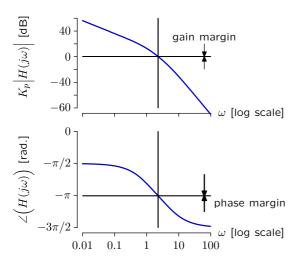


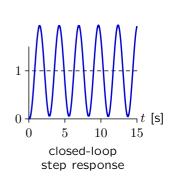
$$K_p = 30$$



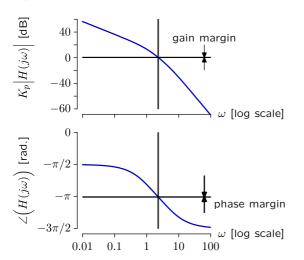


$$K_p = 32$$





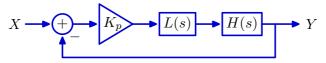
$$K_p = 33$$





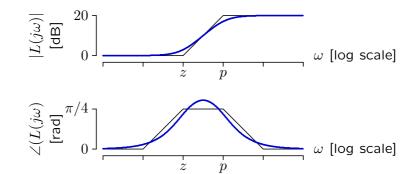
Lead Compensation

Stability can be enhanced by increasing the gain and/or phase margin using a **compensator** as shown below.



We can use a **lead** compensator to increase the phase margin.

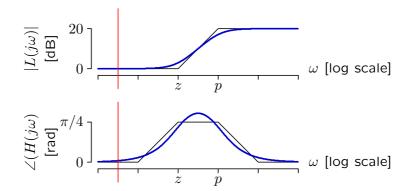
$$L(s) = \left(\frac{p}{z}\right) \left(\frac{s+z}{s+p}\right)$$



Lead Compensation

A lead compensator has no effect on the magnitude or phase at low frequencies.

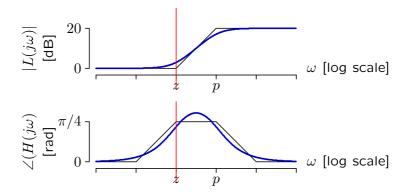
$$L(s) = \left(\frac{p}{z}\right) \left(\frac{s+z}{s+p}\right)$$



Lead Compensation

A lead compensator can significantly increase phase margin (which is good). Unfortunately, it also reduces the gain margin a bit (which is not so good).

$$L(s) = \left(\frac{p}{z}\right) \left(\frac{s+z}{s+p}\right)$$

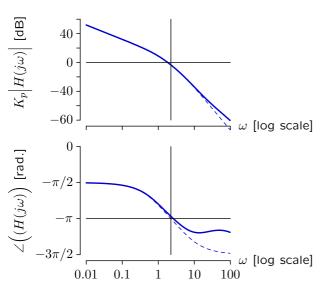


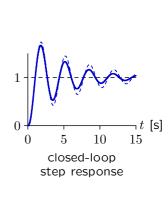
When adjusted appropriately, the increase in phase margin can more than compensate for the slight loss of gain margin.

Using a lead compensator with z=20 and p=200 has a very small effect.

$$K_p = 20$$

$$z = 20; \quad p = 200$$

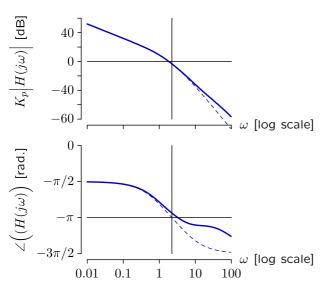


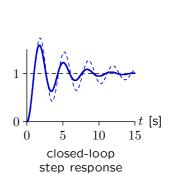


Moving the compensator to a lower frequency increases convergence rate.

$$K_p = 20$$

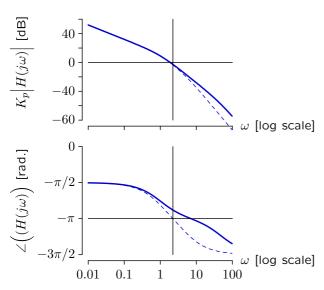
$$z = 10; \quad p = 100$$

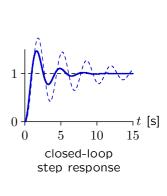




Moving the compensator to a lower frequency increases convergence rate.

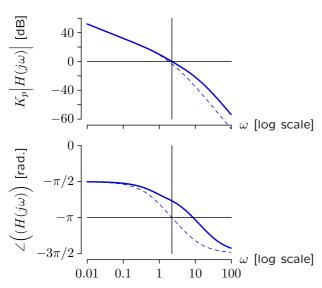
$$K_p = 20$$
$$z = 5; \quad p = 50$$

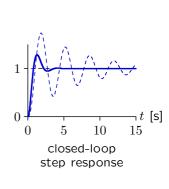




Convergence is dramatically improved when z=2 and p=20.

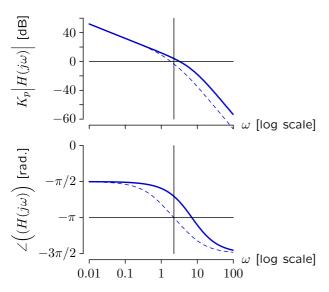
$$K_p = 20$$
$$z = 2; \quad p = 20$$

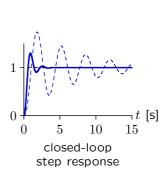




Convergence for z=1 not as good as z=2 — now losing gain margin.

$$K_p = 20$$
$$z = 1; \quad p = 10$$

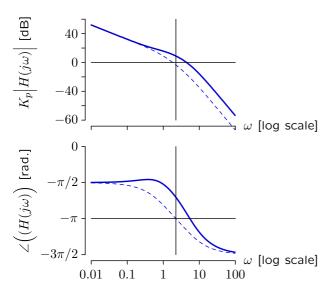


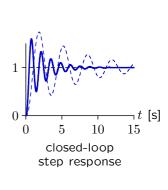


The loss of gain margin is severe when z = 0.5.

$$K_p = 20$$

$$z = 0.5; \quad p = 5$$

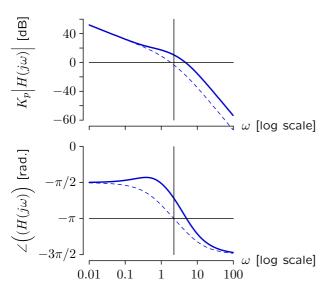


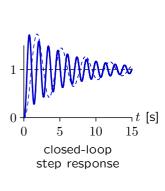


The loss of gain margin is severe when z = 0.4.

$$K_p = 20$$

$$z = 0.4; \quad p = 4$$

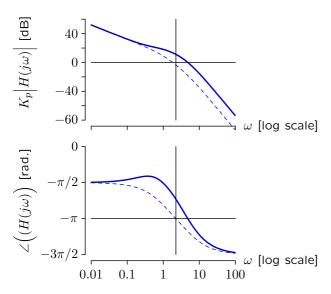


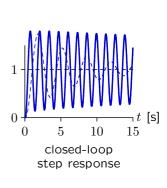


The loss of gain margin is severe when z = 0.35.

$$K_p = 20$$

 $z = 0.35; p = 3.5$

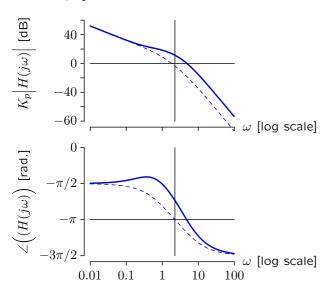


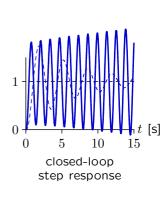


The system is unstable when z = 0.34.

$$K_p = 20$$

 $z = 0.34; p = 3.4$





Check Yourself

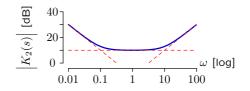
What is the relation (if any) between **lead compensation** and **PD control**?

Lead compensation and PD control are ...

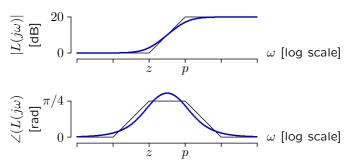
- equivalent if the zero in the lead compensator is at infinity
- equivalent if the pole in the lead compensator is at infinity
- ullet equivalent if the zero in the lead compensator is at $-K_p/K_d$
- equivalent if the zero in the lead compensator is at $-K_p/K_d$ and the pole in the lead compensator is at infinity
- never equivalent

Check Yourself

PID control



lead compensation



Summary

Today we focused on a frequency-response approach to controller design.

Stability criterion: Let ω_0 represent the frequency at which the open-loop phase is $-\pi$. The closed loop system will be stable if the magnitude of the open-loop system at ω_0 is less than 1.

Useful metrics for characterizing relative stability:

- gain margin: ratio of the maximum stable gain to the current gain
- phase margin: additional phase lag needed to make system unstable

Lead compensation can improve performance by increasing phase margin (while also decreasing gain margin slightly).

Next time: root-locus method.