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Last Time: Stability from Open-Loop Frequency Response

If KpH(jω0) = −1 then the closed-loop system has a pole at s = jω0.

+ Kp H(jω)
−

X Y

From Black’s equation,

G(jω0) = Y

X
= KpH(jω0)

1 +KpH(jω0)

If KpH(jω0) = −1, then |G(jω0)| → ∞

But G(s) can also be written as a ratio of first-order factors:

G(s) = K
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

and if G(jω0)→∞ then jω0 is a root of the denominator.

The closed-loop system G(s) must have a pole at s = jω0.



Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

The magnitude of KpH(jωa) is < 1, so the closed-loop system is stable.

Kp = 1

ω [log scale]

K
p

∣ ∣ ∣H(j
ω

)∣ ∣ ∣[dB
]

40

0

−40

−60

ωa

ω [log scale]

∠
( H

(j
ω

)) [r
a

d
.]

0

−π/2

−π

−3π/2
0.01 0.1 1 10 100

1

0 t [s]
0 5 10 15

closed-loop
step response



Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

The gain margin is about 32 dB.
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

As Kp ↑ the gain margin shrinks and the step response becomes oscillatory.

Kp = 2
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

As Kp ↑ the gain margin shrinks and the step response becomes oscillatory.

Kp = 5
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

As Kp ↑ the gain margin shrinks and the step response becomes oscillatory.

Kp = 10
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

As Kp ↑ the gain margin shrinks and the step response becomes oscillatory.

Kp = 20
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

As Kp ↑ the gain margin shrinks and the step response becomes oscillatory.

Kp = 30
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

When gain margin → 0, the closed-loop response no longer converges.

Kp = 32
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Gain Margin

Let ωa represent the frequency where ∠(H(jωa) is −π.

When the gain margin goes negative, the closed-loop system is unstable.

Kp = 33
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

The angle of H(jωm) is greater than −π so the closed-loop system is stable.
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

The phase margin is almost π/2.
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

As Kp ↑ phase margin shrinks and step response becomes oscillatory.
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

As Kp ↑ phase margin shrinks and step response becomes oscillatory.

Kp = 5
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

As Kp ↑ phase margin shrinks and step response becomes oscillatory.

Kp = 10

ω [log scale]

K
p

∣ ∣ ∣H(j
ω

)∣ ∣ ∣[dB
]

40

0

−40

−60

ωm

phase margin

ω [log scale]

∠
( H

(j
ω

)) [r
a

d
.]

0

−π/2

−π

−3π/2
0.01 0.1 1 10 100

1

0 t [s]
0 5 10 15

closed-loop
step response



Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

As Kp ↑ phase margin shrinks and step response becomes oscillatory.

Kp = 20
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

As Kp ↑ phase margin shrinks and step response becomes oscillatory.

Kp = 30
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

When phase margin → 0, the closed-loop response no longer converges.

Kp = 32
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Phase Margin

Let ωm represent the frequency where |KpH(jωm)| = 1.

When phase margin goes negative, the closed-loop system is unstable.

Kp = 33
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Two New Metrics: Gain Margin and Phase Margin

We would typically specify some minimum gain margin and some minimum

phase margin.

Kp = 3
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From the Imaginary Axis ...

The closed-loop system will have a zero at s=jω0 if KpH(jω0)=− 1.

+ Kp H(jω)
−

X Y

From Black’s equation,

G(jω0) = Y

X
= KpH(jω0)

1 +KpH(jω0)

If KpH(jω0) = −1, then |G(jω0)| → ∞

But G(s) can also be written as a ratio of first-order factors:

G(s) = K
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

and if G(jω0)→∞ then jω0 is a root of the denominator.

The closed-loop system G(s) must have a pole at s = jω0.



... to the Entire Complex Plane

The closed-loop system will have a zero at s=s0 if KpH(s0)=− 1.

+ Kp H(s)
−

X Y

From Black’s equation,

G(s0) = Y

X
= KpH(s0)

1 +KpH(s0)

If KpH(s0) = −1, then |G(s0)| → ∞

But G(s) can also be written as a ratio of first-order factors:

G(s) = K
(s− z1)(s− z2)(s− z3) · · ·
(s− p1)(s− p2)(s− p3) · · ·

and if G(s)→∞ then s0 is a root of the denominator.

The closed-loop system G(s) must have a pole at s = s0.

The collection of all such s0 is called a root locus.



Root Locus

A root locus shows points in the s-plane that are poles of the closed loop

system function G(s) = Y/X for values of Kp > 0.

+ Kp H(s)
−

X Y

Example: Root locus for H(s) = 1
s(s+ 1)

Re(s)

Im(s)

Given an expression for H(s), we can easily calculate the poles of the

closed-loop system function G(s) numerically.



Root Locus

A root locus shows points in the s-plane that are poles of the closed loop

system function G(s) = Y/X for values of Kp > 0.

+ Kp H(s)
−

X Y

Example: Root locus for H(s) = 1
s(s+ 1)

Re(s)

Im(s)

A more intuitive (and often more informative) method is to solve the sta-

bility criteria using vectors to represent the open-loop transfer function

H(s).



Vector Analysis

The transfer function of a system composed of adders, gains, differentia-

tors, and integrators can be determined from vectors associated with the

system’s poles/zeros.

H(s0) = K
(s0 − z0)(s0 − z1)(s0 − z2) · · ·
(s0 − p0)(s0 − p1)(s0 − p2) · · ·

z0
z0

s0−z0
s0

s-planes0

Combine the vector representation with the stability criteria:

•
∣∣∣KpH(s0)

∣∣∣ = 1 and

• ∠(KpH(s0) = −π (±k2π)
}KpH(s0) = −1

to find the root locus.



Vector Analysis

The transfer function of a system composed of adders, gains, differentia-

tors, and integrators can be determined from vectors associated with the

system’s poles/zeros.

H(s0) = K
(s0 − z0)(s0 − z1)(s0 − z2) · · ·
(s0 − p0)(s0 − p1)(s0 − p2) · · ·

z0
z0

s0−z0
s0

s-planes0

Combine the vector representation with the stability criteria:

•
∣∣∣KpH(s0)

∣∣∣ = 1 and

• ∠(KpH(s0) = −π (±k2π)
}KpH(s0) = −1

Surprisingly, the angle relation is easiest to work with.



Root Locus

The shape of the root locus follows from a few simple rules.

G(s) = KpH(s)
1 +KpH(s)

Starting Rule: Each root locus branch starts at an open-loop pole.

For 0 < Kp << 1, the denominator of G(s)→ 1 and

G(s)→ KpH(s)
The closed-loop poles of G(s) are equal to the open-loop poles of H(s).

Example: The following plot shows open-loop poles/zeros of a plant H(s):

Re(s)

Im(s)

The associated root locus has 3 branches, one starting from each pole.



Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles

to the right of the point plus # of zeros to the right of the point is odd.

If a system contains just adders, gains, differentiators, and integrators, then

poles (and zeros) with nonzero imaginary parts come in conjugate pairs,

and do not contribute to the angle of H(s) if s is on the real axis.

θ

-θ

A real-valued pole or zero contributes 0 or π to the angle of H(s0) depending

on whether s0 is to the right or left of the pole or zero.

θ = 0

s0

θ = π

s0



Root Locus

Real-Axis Rule: A point on the real axis is in the root locus if # of poles

to the right of the point plus # of zeros to the right of the point is odd.

Examples:



Root Locus

Break-Away Rule: Increasing Kp after two real-valued closed-loop poles

collide causes them to split off the real axis.

The left panel below shows two real-valued, closed-loop poles approaching

each other. Notice that their angles sum to π prior to collision.

The right panel below shows that the angles still sum to π after the collision.

θ = πθ = 0 π − θθ



Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N>0, there

will be N high-gain asymptotes with angles at odd multiples of π/N .

When |s| is large, vectors from the poles and zeros of H(s) to s will be

approximately equal. Since the angle from a pole will be equal to the

angle from a zero, the angles from pole/zero pairs will cancel, leaving a

net number of excess poles (N) whose angles must sum to π.

θ = π
N



Root Locus

High-Gain Rule: If the # of poles exceeds the # of zeros by N , there will

be N high-gain asymptotes with angles at (2n+1)π/N .

Zero Excess Poles

(no asymptotes)

θ = π

One Excess Pole

(one asymptote)

θ = π/2

θ = −π/2

Two Excess Poles

(two asymptotes)

θ = π/3

θ = −π/3

θ = π

Three Excess Poles

(three asymptotes)



Root Locus

Mean Rule: If # of poles is at least two greater than the # of zeros, then

the average closed-loop pole position is independent of Kp.

Example:

H(s) = s+z
(s+p1)(s+p2)(s+p3)

G(s) =
s+z

(s+p1)(s+p2)(s+p3)

1 + Kp(s+z)
(s+p1)(s+p2)(s+p3)

= s+z
(s+p1)(s+p2)(s+p3) +Kp(s+z)

= s+z
s3 + (p1+p2+p3)s2 + (p1p2+p1p3+p2p3)s+ (p1p2p3) +Kps+Kpz

= s+z
s3 + (p1+p2+p3)s2 + (p1p2+p1p3+p2p3 +Kp)s+ (p1p2p3 +Kpz)

The sum of the closed-loop poles (p1+p2+p3) does not depend on Kp.



Root Locus

Ending Rule: Each root locus branch ends at an open-loop zero or ∞.

As Kp → ∞, |H(s)| must approach 0 to satisfy the magnitude criterion

|KpH(s)| = 1.

If the number of open-loop zeros (nz) is greater than or equal to the

number of open-loop poles (np), each branch of the root locus will end at

an open-loop zero.

If nz is less than np, then np−nz branches must go to infinity. As |s| → ∞,

H(s) = K
(s− z1)(s− z2)(s− z3) · · · (s− znz )
(s− p1)(s− p2)(s− p3) · · · (s− pnp)

will approach zero since the order of the denominator is greater than that

of the numerator.



Example: Root Locus Analysis

Root locus for the problem from the beginning of lecture.

H(s) = 1
s(s+ 1)(s+ 5)

Re(s)

Im(s)

Kp = 0: three real-valued poles (two dominant).

0<Kp<1: real poles at s=0 and −1 move toward each other.

1<Kp<32: complex poles → oscillations increase in freq and persistence.

Kp>32: complex pole-pair goes unstable.



Example: Frequency Response Analysis

If 0<Kp<1 there are two real-valued poles.
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Example: Frequency Response Analysis

If 0<Kp<1 there are two real-valued poles.

Kp = 1
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Example: Frequency Response Analysis

If 1<Kp<32 oscillation increases in frequency and persistence.

Kp = 2
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Example: Frequency Response Analysis

If 1<Kp<32 oscillation increases in frequency and persistence.

Kp = 5
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Example: Frequency Response Analysis

If 1<Kp<32 oscillation increases in frequency and persistence.

Kp = 10
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Example: Frequency Response Analysis

If 1<Kp<32 oscillation increases in frequency and persistence.

Kp = 20
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Example: Frequency Response Analysis

If 1<Kp<32 oscillation increases in frequency and persistence.

Kp = 30
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Example: Frequency Response Analysis

If Kp=32 persistent oscillation

Kp = 32
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Example: Frequency Response Analysis

If Kp>32 unstable.

Kp = 33
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Example: Root Locus Analysis

Return to problem from beginning of lecture:

H(s) = 1
s(s+ 1)(s+ 5)

Re(s)

Im(s)

Kp = 0: three real-valued poles (two dominant).

0<Kp<1: real poles at s=0 and −1 move toward each other.

1<Kp<32: complex poles → oscillations increase in freq and persistence.

Kp>32: complex pole-pair goes unstable.



Summary

Today we focused on the root-locus method to analyze and design con-

trollers.

This method builds on the frequency response method from last lecture.

Both methods are based on the observation that the poles of a closed-loop

system are at the frequencies s0 where the open-loop system is −1.


