6.3100: Dynamic System Modeling and Control Design

Gain Margin, Phase Margin, and Root Locus

March 20, 2024

Last Time: Stability from Open-Loop Frequency Response

If $K_pH(j\omega_0) = -1$ then the closed-loop system has a pole at $s = j\omega_0$.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow K_p \longrightarrow H(j\omega) \longrightarrow Y
$$

From Black's equation,

$$
G(j\omega_0) = \frac{Y}{X} = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}
$$

If
$$
K_p H(j\omega_0) = -1
$$
, then $|G(j\omega_0)| \to \infty$

But *G*(*s*) can also be written as a ratio of first-order factors:

$$
G(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}
$$

and if $G(j\omega_0) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system $G(s)$ must have a pole at $s = j\omega_0$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$. The magnitude of $K_pH(j\omega_a)$ is < 1 , so the closed-loop system is stable.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$. The gain margin is about 32 dB.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$. When gain margin $\rightarrow 0$, the closed-loop response no longer converges.

Let ω_a represent the frequency where $\angle(H(j\omega_a))$ is $-\pi$.

When the gain margin goes negative, the closed-loop system is unstable.

Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$. The angle of $H(j\omega_m)$ is greater than $-\pi$ so the closed-loop system is stable.

Let ω_m represent the frequency where $|K_pH(j\omega_m)| = 1$. The phase margin is almost *π/*2.

Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$.

Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$. When phase margin $\rightarrow 0$, the closed-loop response no longer converges.

Let ω_m represent the frequency where $|K_pH(j\omega_m)|=1$. When phase margin goes negative, the closed-loop system is unstable.

Two New Metrics: Gain Margin and Phase Margin

We would typically specify some minimum gain margin and some minimum phase margin.

From the Imaginary Axis ...

The closed-loop system will have a zero at $s=j\omega_0$ if $K_pH(j\omega_0)=-1$.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow K_p \longrightarrow H(j\omega) \longrightarrow Y
$$

From Black's equation,

$$
G(j\omega_0) = \frac{Y}{X} = \frac{K_p H(j\omega_0)}{1 + K_p H(j\omega_0)}
$$

If $K_pH(j\omega_0) = -1$, then $|G(j\omega_0)| \to \infty$

But *G*(*s*) can also be written as a ratio of first-order factors:

$$
G(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}
$$

and if $G(j\omega_0) \to \infty$ then $j\omega_0$ is a root of the denominator.

The closed-loop system $G(s)$ must have a pole at $s = j\omega_0$.

... to the Entire Complex Plane

The closed-loop system will have a zero at $s=s_0$ if $K_pH(s_0)=-1$.

$$
X \longrightarrow \bigoplus_{\bullet} \longrightarrow K_p \longrightarrow H(s) \longrightarrow Y
$$

From Black's equation,

$$
G(s_0) = \frac{Y}{X} = \frac{K_p H(s_0)}{1 + K_p H(s_0)}
$$

If $K_pH(s_0) = -1$, then $|G(s_0)| \to \infty$

But *G*(*s*) can also be written as a ratio of first-order factors:

$$
G(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots}{(s-p_1)(s-p_2)(s-p_3)\cdots}
$$

and if $G(s) \to \infty$ then s_0 is a root of the denominator.

The closed-loop system $G(s)$ must have a pole at $s = s_0$. The collection of all such s_0 is called a **root locus**.

A root locus shows points in the *s*-plane that are poles of the closed loop system function $G(s) = Y/X$ for values of $K_p > 0$.

Given an expression for $H(s)$, we can easily calculate the poles of the closed-loop system function *G*(*s*) numerically.

A root locus shows points in the *s*-plane that are poles of the closed loop system function $G(s) = Y/X$ for values of $K_p > 0$.

A more intuitive (and often more informative) method is to solve the stability criteria using vectors to represent the open-loop transfer function *H*(*s*).

Vector Analysis

The transfer function of a system composed of adders, gains, differentiators, and integrators can be determined from **vectors** associated with the system's poles/zeros.

$$
H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}
$$

$$
s_0 - z_0
$$

$$
s_0
$$

$$
s_0
$$

$$
z_0
$$

Combine the vector representation with the stability criteria:

•
$$
\begin{aligned}\n\left| K_p H(s_0) \right| &= 1 \text{ and} \\
& \angle (K_p H(s_0) &= -\pi \ (\pm k 2\pi)\n\end{aligned}\n\quad\n\bigg\} K_p H(s_0) = -1
$$

to find the root locus.

Vector Analysis

The transfer function of a system composed of adders, gains, differentiators, and integrators can be determined from **vectors** associated with the system's poles/zeros.

$$
H(s_0) = K \frac{(s_0 - z_0)(s_0 - z_1)(s_0 - z_2) \cdots}{(s_0 - p_0)(s_0 - p_1)(s_0 - p_2) \cdots}
$$

$$
s_0 - z_0
$$

$$
s_0
$$

$$
s_0
$$

$$
z_0
$$

Combine the vector representation with the stability criteria:

•
$$
\begin{aligned}\n\left| K_p H(s_0) \right| &= 1 \text{ and} \\
\left| K_p H(s_0) \right| &= -\pi \left(+k \cdot 2\pi \right)\n\end{aligned}
$$
\n
$$
\left\{ K_p H(s_0) = -1 \right\}
$$

• ∠($K_pH(s_0) = -\pi$ ($\pm k2\pi$) J

Surprisingly, the **angle relation** is easiest to work with.

The shape of the root locus follows from a few simple rules.

$$
G(s) = \frac{K_p H(s)}{1 + K_p H(s)}
$$

Starting Rule: Each root locus branch starts at an open-loop pole.

For $0 < K_p << 1$, the denominator of $G(s) \rightarrow 1$ and $G(s) \rightarrow K_p H(s)$

The closed-loop poles of *G*(*s*) are equal to the open-loop poles of *H*(*s*).

Example: The following plot shows open-loop poles/zeros of a plant *H*(*s*):

The associated root locus has 3 branches, one starting from each pole.

Real-Axis Rule: A point on the real axis is in the root locus if $#$ of poles to the right of the point plus $#$ of zeros to the right of the point is **odd**.

If a system contains just adders, gains, differentiators, and integrators, then poles (and zeros) with nonzero imaginary parts come in conjugate pairs, and do not contribute to the angle of $H(s)$ if *s* is on the real axis.

A real-valued pole or zero contributes 0 or π to the angle of $H(s_0)$ depending on whether s_0 is to the right or left of the pole or zero.

Real-Axis Rule: A point on the real axis is in the root locus if $#$ of poles to the right of the point plus $#$ of zeros to the right of the point is **odd**.

Examples:

Break-Away Rule: Increasing *K^p* after two real-valued closed-loop poles collide causes them to split off the real axis.

The left panel below shows two real-valued, closed-loop poles approaching each other. Notice that their angles sum to π prior to collision. The right panel below shows that the angles still sum to *π* after the collision.

High-Gain Rule: If the $\#$ of poles exceeds the $\#$ of zeros by $N>0$, there will be *N* high-gain asymptotes with angles at odd multiples of *π/N*.

When $|s|$ is large, vectors from the poles and zeros of $H(s)$ to *s* will be approximately equal. Since the angle from a pole will be equal to the angle from a zero, the angles from pole/zero pairs will cancel, leaving a net number of excess poles (*N*) whose angles must sum to *π*.

High-Gain Rule: If the $\#$ of poles exceeds the $\#$ of zeros by N, there will be *N* high-gain asymptotes with angles at (2*n*+1)*π/N*.

Mean Rule: If $\#$ of poles is at least two greater than the $\#$ of zeros, then the average closed-loop pole position is independent of *Kp*.

Example:

$$
H(s) = \frac{s+z}{(s+p_1)(s+p_2)(s+p_3)}
$$

\n
$$
G(s) = \frac{\frac{s+z}{(s+p_1)(s+p_2)(s+p_3)}}{1 + \frac{K_p(s+z)}{(s+p_1)(s+p_2)(s+p_3)}}
$$

\n
$$
= \frac{s+z}{(s+p_1)(s+p_2)(s+p_3) + K_p(s+z)}
$$

\n
$$
= \frac{s+z}{s^3 + (p_1+p_2+p_3)s^2 + (p_1p_2+p_1p_3+p_2p_3)s + (p_1p_2p_3) + K_p s + K_p z}
$$

\n
$$
= \frac{s+z}{s^3 + (p_1+p_2+p_3)s^2 + (p_1p_2+p_1p_3+p_2p_3 + K_p)s + (p_1p_2p_3 + K_p z)}
$$

\nThe sum of the closed-loop poles $(p_1+p_2+p_3)$ does not depend on K_p .

Ending Rule: Each root locus branch ends at an open-loop zero or ∞ .

As $K_p \to \infty$, $|H(s)|$ must approach 0 to satisfy the magnitude criterion $|K_pH(s)| = 1.$

If the number of open-loop zeros (n_z) is greater than or equal to the number of open-loop poles (*np*), each branch of the root locus will end at an open-loop zero.

If
$$
n_z
$$
 is less than n_p , then $n_p - n_z$ branches must go to infinity. As $|s| \to \infty$,
\n
$$
H(s) = K \frac{(s-z_1)(s-z_2)(s-z_3)\cdots(s-z_{n_z})}{(s-p_1)(s-p_2)(s-p_3)\cdots(s-p_{n_p})}
$$

will approach zero since the order of the denominator is greater than that of the numerator.

Example: Root Locus Analysis

Root locus for the problem from the beginning of lecture.

 $K_p = 0$: three real-valued poles (two dominant).

0*<Kp<*1: real poles at *s*=0 and −1 move toward each other.

 $1\leq K_p\leq 32$: complex poles \rightarrow oscillations increase in freq and persistence. *Kp>*32: complex pole-pair goes unstable.

If $0 < K_p < 1$ there are two real-valued poles.

If $0 < K_p < 1$ there are two real-valued poles.

If $K_p = 32$ persistent oscillation

If K_p >32 unstable.

Example: Root Locus Analysis

Return to problem from beginning of lecture:

 $K_p = 0$: three real-valued poles (two dominant).

0*<Kp<*1: real poles at *s*=0 and −1 move toward each other.

 $1\leq K_p\leq 32$: complex poles \rightarrow oscillations increase in freq and persistence. *Kp>*32: complex pole-pair goes unstable.

Summary

Today we focused on the root-locus method to analyze and design controllers.

This method builds on the frequency response method from last lecture.

Both methods are based on the observation that the poles of a closed-loop system are at the frequencies s_0 where the open-loop system is -1 .