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6.3100 Lecture 17 Notes – Spring 2024 

Connection between Continuous Time and Discrete Time State-Space Control  
Dennis Freeman, Elfar Adalsteinsson, and Kevin Chen 

Outline: 
1. Discrete time state space control 
2. Eigenvalue, stability, and spectral theorem 
3. Example: scalar system 
4. Example: pendulum   

 
1. Discrete time state space control  
Since last week, we introduced state space control in the context of continuous time systems. 
This is true for most physical systems because they are characterized by differential equations. 
However, most physical systems are controlled by microprocessors that run at a discrete clock 
cycle. Practically, it is important to learn about the connections between discrete time and 
continuous time systems.  

The general form of continuous time state-space system is:  

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡) 

𝑦𝑦 = 𝐶𝐶𝑥𝑥(𝑡𝑡) 

Suppose we want to convert these equations to discrete time. We first convert the input, state, 
and output variables: 

𝐵𝐵[𝑛𝑛] = 𝐵𝐵(𝑛𝑛∆𝑇𝑇)
𝑥𝑥[𝑛𝑛] = 𝑥𝑥(𝑛𝑛∆𝑇𝑇)
𝑦𝑦[𝑛𝑛] = 𝑦𝑦(𝑛𝑛∆𝑇𝑇)

 

The two systems are identical if the input signal is piecewise constant: 𝐵𝐵(𝑡𝑡) = 𝐵𝐵[𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓( 𝑡𝑡
∆𝑇𝑇 

)]. 

We want to rewrite the discrete time system in the following form:  

𝑥𝑥[𝑛𝑛] = 𝐴𝐴𝑑𝑑𝑥𝑥[𝑛𝑛 − 1] + 𝐵𝐵𝑑𝑑𝐵𝐵[𝑛𝑛 − 1]
𝑦𝑦[𝑛𝑛] = 𝐶𝐶𝑑𝑑𝑥𝑥[𝑛𝑛]  

Note that here we “hide” the matrix 𝐸𝐸𝑑𝑑 by simply letting it be an identity matrix. This is more of 
a computational convenience. In practice, as long as 𝐸𝐸𝑑𝑑  is invertible, we can multiply the 
equation by 𝐸𝐸𝑑𝑑−1 to remove this term.  

The key question is how to solve for the equivalent 𝐴𝐴𝑑𝑑 ,𝐵𝐵𝑑𝑑 , 𝑎𝑎𝑛𝑛𝑎𝑎 𝐶𝐶𝑑𝑑? 

For the CT system with initial condition x(0) and constant input u(0), the analytical solution is: 

𝑥𝑥(𝑡𝑡) = 𝑒𝑒𝐴𝐴𝑡𝑡𝑥𝑥(0) + (𝑒𝑒𝐴𝐴𝑡𝑡 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵𝐵𝐵(0) 
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If we take two specific time 𝑛𝑛∆𝑇𝑇 and (𝑛𝑛 − 1)∆𝑇𝑇, then the relationship is given by: 

𝑥𝑥(𝑛𝑛∆𝑇𝑇) = 𝑒𝑒𝐴𝐴∆𝑇𝑇𝑥𝑥�(𝑛𝑛 − 1)∆𝑇𝑇� + (𝑒𝑒𝐴𝐴∆𝑇𝑇 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵𝐵𝐵((𝑛𝑛 − 1)∆𝑇𝑇) 

Now we can substitute the DT variables: 

𝑥𝑥[𝑛𝑛] = 𝑒𝑒𝐴𝐴∆𝑇𝑇𝑥𝑥[𝑛𝑛 − 1] + (𝑒𝑒𝐴𝐴∆𝑇𝑇 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵𝐵𝐵[𝑛𝑛 − 1] 

The output to state variable relationship is unchanged: 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡) → 𝑦𝑦[𝑛𝑛] = 𝐶𝐶𝑑𝑑𝑥𝑥[𝑛𝑛] 

Matching terms we will have: 

𝐴𝐴𝑑𝑑 = 𝑒𝑒𝐴𝐴∆𝑇𝑇

𝐵𝐵𝑑𝑑 = (𝑒𝑒𝐴𝐴∆𝑇𝑇 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵
𝐶𝐶𝑑𝑑 = 𝐶𝐶

 

This is the analytical conversion equation. Practically, calculating matrix exponential can be 
expensive. In many cases, we can approximate the using Taylor series expansion:  

𝐴𝐴𝑑𝑑 = 𝑒𝑒𝐴𝐴∆𝑇𝑇 ≈ 𝐼𝐼 + 𝐴𝐴∆𝑇𝑇
𝐵𝐵𝑑𝑑 = (𝑒𝑒𝐴𝐴∆𝑇𝑇 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵 ≈ 𝐵𝐵∆𝑇𝑇

𝐶𝐶𝑑𝑑 = 𝐶𝐶
 

It is much easier to calculate matrix products than matrix exponentials.  

Finally, for completeness, we give the general solution of DT system without proof:  

𝑦𝑦[𝑘𝑘] = 𝐶𝐶𝑑𝑑𝐴𝐴𝑑𝑑𝑘𝑘𝑥𝑥[0] + 𝐶𝐶𝑑𝑑�𝐴𝐴𝑑𝑑𝑘𝑘−𝑖𝑖−1𝐵𝐵𝑑𝑑𝐵𝐵[𝑘𝑘]
𝑘𝑘−1

𝑖𝑖=0

 

2. Eigenvalue, stability, and spectral theorem 
Next, we analyze the open-loop stability property of DT system. To analyze open-loop stability, 
we need to relate input u with output y. We perform z-transform:  

𝑋𝑋 = 𝐴𝐴𝑑𝑑𝑋𝑋𝑧𝑧−1 + 𝐵𝐵𝑑𝑑𝑈𝑈𝑧𝑧−1 → 𝑋𝑋 = (𝑧𝑧𝐼𝐼 − 𝐴𝐴𝑑𝑑)−1𝐵𝐵𝑑𝑑𝑈𝑈
𝑌𝑌 = 𝐶𝐶𝑑𝑑𝑋𝑋 = 𝐶𝐶𝑑𝑑(𝑧𝑧𝐼𝐼 − 𝐴𝐴𝑑𝑑)−1𝐵𝐵𝑑𝑑

 

The open-loop transfer function is given by:  

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑧𝑧) = 𝐶𝐶𝑑𝑑(𝑧𝑧𝐼𝐼 − 𝐴𝐴𝑑𝑑)−1𝐵𝐵𝑑𝑑 

From the result presented from the previous lecture, the poles are given by the eigenvalues of 
the matrix 𝐴𝐴𝑑𝑑, which determines open loop stability. How do we calculate the eigenvalue of 𝐴𝐴𝑑𝑑? 
Keep in mind that we are converting from a CT system, so most likely we know the eigenvalues 
of A. The core question becomes how to figure out the eigenvalues of 𝐴𝐴𝑑𝑑 from the eigenvalues 
of A.  
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We invoke the spectral theorem in linear algebra. The spectral theorem states that given 𝑓𝑓(𝑧𝑧) =
 ∑ 𝑎𝑎𝑙𝑙𝑧𝑧𝑙𝑙𝐿𝐿

𝑙𝑙=0 , if 𝜆𝜆 is an eigenvalue of A, then 𝑓𝑓(𝜆𝜆) is an eigenvalue of 𝑓𝑓(𝐴𝐴). This condition gives us a 
simple result: 

If 𝜆𝜆 is an eigenvalue of A, then 𝑒𝑒𝜆𝜆∆𝑇𝑇 is an eigenvalue of 𝑒𝑒𝐴𝐴∆𝑇𝑇, which is 𝐴𝐴𝑑𝑑.  

For CT system, the system is stable if max(real(𝜆𝜆𝐴𝐴)) < 0. That is, all eigenvalues of A must be in 
the left half plane. For DT system, the system is stable if |𝜆𝜆𝐴𝐴𝑑𝑑| < 1. That is, all eigenvalues of Ad 

must be within the unit circle.  

Next, we will work through 2 examples to analyze system stability.  

3. Example: scalar system 
Consider the scalar state space system below: 

3
𝑎𝑎𝑥𝑥(𝑡𝑡)
𝑎𝑎𝑡𝑡

= −25𝑥𝑥(𝑡𝑡) + 15𝐵𝐵(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡) 

1)  Please convert it into discrete time system with ∆𝑇𝑇 = 1/20.  

Solution: We have E = 3, A = -25, B = 15, C = 1, D = 0. We can use the analytical equations or first-
order Taylor series expansion equations. Here we show some MATLAB commands.  

We can formulate a continuous time system: C_sys = dss(A,B,C,D,E); 

Then we set dt = 1/20; 

Next, we convert the system into a DT system: D_sys = c2d(C_sys,dt); 

We can print out the converted matrices by typing D_sys.A, etc.  

2) What are the eigenvalues of exact and approximate DT systems. 

Exact system: D_pole = eig(D_sys.A), or eig(expm(E^(-1)* A*dt)); 

Approximate system: D_pole_approx = eig(1 + dt * E^-1*A); 

MATLAB will return D_pole = 0.6592 and D_pole_approx = 0.5833 

3) For what ∆T value will the exact DT eigenvalue change to 0.99?  

We need to solve for  0.99 = 𝑒𝑒𝐸𝐸−1𝐴𝐴∆𝑇𝑇. This is given by ∆𝑇𝑇 =  𝑙𝑙𝑜𝑜𝑙𝑙0.99
𝐸𝐸−1𝐴𝐴

. 

4. Example: pendulum  

Let’s consider a matrix problem that has two states: 𝜃𝜃(𝑡𝑡) 𝑎𝑎𝑛𝑛𝑎𝑎 𝑤𝑤(𝑡𝑡). This system of equation 
models a pendulum. It is very similar to the inverted pendulum example discussed in the previous 
lecture. For a pendulum system, the state vector is defined as:  
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𝑥𝑥(𝑡𝑡) = �𝜃𝜃(𝑡𝑡)
𝑤𝑤(𝑡𝑡)� 

The CT equation is given by:  

𝑎𝑎
𝑎𝑎𝑡𝑡
�𝜃𝜃(𝑡𝑡)
𝑤𝑤(𝑡𝑡)� = � 0 1

−9 0� �
𝜃𝜃(𝑡𝑡)
𝑤𝑤(𝑡𝑡)� + �02� 𝐵𝐵(𝑡𝑡) 

𝜃𝜃(𝑡𝑡) = [1 0] �𝜃𝜃(𝑡𝑡)
𝑤𝑤(𝑡𝑡)� 

1. Please find the DT system representation, Ad, Bd, and Cd. Here dt = 1/20.  

𝐴𝐴𝑑𝑑 = 𝑒𝑒𝐴𝐴∆𝑇𝑇 = � 0.9888 0.0498
−0.4483 0.9888� 

𝐵𝐵𝑑𝑑 = (𝑒𝑒𝐴𝐴∆𝑇𝑇 − 𝐼𝐼)𝐴𝐴−1𝐵𝐵 = �0.0025
0.0996� 

𝐶𝐶𝑑𝑑 = 𝐶𝐶 = [1 0] 

2. Find the eigenvalues of the CT and DT systems. Comment of system stability. 
𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴) = [−3𝑗𝑗, 3𝑗𝑗] 

𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴𝑑𝑑) = [0.9888 + 0.1494𝑗𝑗, 0.9888 − 0.1494𝑗𝑗] 
Both systems are marginally stable.  

3. What is the smallest ∆𝑇𝑇 such that the DT system’s Ad matrix is the negative of an identity 
matrix? 
This is an exercise of using the spectral theorem. We want:  

𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝐴𝐴∆𝑇𝑇) = −1 = 𝑒𝑒±𝑗𝑗𝑗𝑗 
We know that 

𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴) = ±3𝑗𝑗 
Accordingly to the spectral theorem, we have 

𝑒𝑒(±3𝑗𝑗)∆𝑇𝑇 = 𝑒𝑒±𝑗𝑗𝑗𝑗 
Solving for this relationship we will arrive at: 

∆𝑇𝑇 =
𝜋𝜋
3

 

4. What is the stability property of an approximated DT system (using Taylor series 
expansion)? 
We have: 

𝐴𝐴𝑑𝑑,𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎 = 𝐼𝐼 + 𝐴𝐴∆𝑇𝑇 
Using the spectral theorem,  

𝑒𝑒𝑒𝑒𝑒𝑒�𝐴𝐴𝑑𝑑,𝑎𝑎𝑜𝑜𝑜𝑜𝑎𝑎𝑜𝑜𝑎𝑎� = 1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝐴𝐴)∆𝑇𝑇 = 1 ± 3𝑗𝑗∆𝑇𝑇 
Note that the magnitude of |1 ± 3𝑗𝑗∆𝑇𝑇| > 1, which means the approximate system is 
unstable! The properties of approximated DT system may not be stable! 

  


